
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-3: Polymorphism

reading: 9.3

Copyright 2008 by Pearson Education
2

Copyright 2008 by Pearson Education
3

Polymorphism
�  polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.

�  System.out.println can print any type of object.

�  Each one displays in its own way on the console.

�  CritterMain can interact with any type of critter.
�  Each one moves, fights, etc. in its own way.

Copyright 2008 by Pearson Education
4

Coding with polymorphism
�  A variable of type T can hold an object of any subclass of T.

 Employee ed = new Lawyer();

�  You can call any methods from the Employee class on ed.

�  When a method is called on ed, it behaves as a Lawyer.

 System.out.println(ed.getSalary()); // 50000.0
 System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
5

Polymorphism and parameters
�  You can pass any subtype of a parameter's type.

public class EmployeeMain {
 public static void main(String[] args) {
 Lawyer lisa = new Lawyer();
 Secretary steve = new Secretary();
 printInfo(lisa);
 printInfo(steve);
 }

 public static void printInfo(Employee empl) {
 System.out.println("salary: " + empl.getSalary());
 System.out.println("v.days: " + empl.getVacationDays());
 System.out.println("v.form: " + empl.getVacationForm());
 System.out.println();
 }
}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

Copyright 2008 by Pearson Education
6

Polymorphism and arrays
�  Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
 public static void main(String[] args) {
 Employee[] e = { new Lawyer(), new Secretary(),
 new Marketer(), new LegalSecretary() };

 for (int i = 0; i < e.length; i++) {
 System.out.println("salary: " + e[i].getSalary());
 System.out.println("v.days: " + e[i].getVacationDays());
 System.out.println();
 }
 }
}

Output:

salary: 50000.0
v.days: 15

salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

Copyright 2008 by Pearson Education
7

Polymorphism problems
�  4-5 classes with inheritance relationships are shown.

�  A client program calls methods on objects of each class.

�  You must read the code and determine the client's output.

�  We always put such a question on our final exams!

Copyright 2008 by Pearson Education
8

A polymorphism problem
�  Suppose that the following four classes have been declared:

public class Foo {
 public void method1() {
 System.out.println("foo 1");
 }

 public void method2() {
 System.out.println("foo 2");
 }

 public String toString() {
 return "foo";
 }
}

public class Bar extends Foo {
 public void method2() {
 System.out.println("bar 2");
 }
}

Copyright 2008 by Pearson Education
9

A polymorphism problem
public class Baz extends Foo {
 public void method1() {
 System.out.println("baz 1");
 }

 public String toString() {
 return "baz";
 }
}

public class Mumble extends Baz {
 public void method2() {
 System.out.println("mumble 2");
 }
}

�  What would be the output of the following client code?

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {
 System.out.println(pity[i]);
 pity[i].method1();
 pity[i].method2();
 System.out.println();
}

Copyright 2008 by Pearson Education
10

�  Add classes from top (superclass) to bottom (subclass).

�  Include all inherited methods.

Diagramming the classes

Copyright 2008 by Pearson Education
11

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Copyright 2008 by Pearson Education
12

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {
 System.out.println(pity[i]);
 pity[i].method1();
 pity[i].method2();
 System.out.println();
}

�  Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

Copyright 2008 by Pearson Education
13

Another problem
�  The order of the classes is jumbled up.
�  The methods sometimes call other methods (tricky!).

public class Lamb extends Ham {
 public void b() {
 System.out.print("Lamb b ");
 }
}

public class Ham {
 public void a() {
 System.out.print("Ham a ");
 b();
 }

 public void b() {
 System.out.print("Ham b ");
 }

 public String toString() {
 return "Ham";
 }
}

Copyright 2008 by Pearson Education
14

Another problem 2
public class Spam extends Yam {
 public void b() {
 System.out.print("Spam b ");
 }
}

public class Yam extends Lamb {
 public void a() {
 System.out.print("Yam a ");
 super.a();
 }

 public String toString() {
 return "Yam";
 }
}

�  What would be the output of the following client code?

Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};
for (int i = 0; i < food.length; i++) {
 System.out.println(food[i]);
 food[i].a();
 System.out.println(); // to end the line of output
 food[i].b();
 System.out.println(); // to end the line of output
 System.out.println();
}

Copyright 2008 by Pearson Education
15

Class diagram

Copyright 2008 by Pearson Education
16

Polymorphism at work
�  Lamb inherits Ham's a. a calls b. But Lamb overrides b...

public class Ham {
 public void a() {
 System.out.print("Ham a ");
 b();
 }

 public void b() {
 System.out.print("Ham b ");
 }

 public String toString() {
 return "Ham";
 }
}

public class Lamb extends Ham {
 public void b() {
 System.out.print("Lamb b ");
 }
}

�  Lamb's output from a:
Ham a Lamb b

Copyright 2008 by Pearson Education
17

The table
method Ham Lamb Yam Spam

a

b

toString

method Ham Lamb Yam Spam

a Ham a

b()
Yam a

Ham a
b()

b Ham b Lamb b Spam b

toString Ham Yam

method Ham Lamb Yam Spam

a Ham a

b()
Ham a

b()
Yam a

Ham a
b()

Yam a

Ham a
b()

b Ham b Lamb b Lamb b Spam b

toString Ham Ham Yam Yam

Copyright 2008 by Pearson Education
18

The answer
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};
for (int i = 0; i < food.length; i++) {
 System.out.println(food[i]);
 food[i].a();
 food[i].b();
 System.out.println();
}

�  Output:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham b

Yam
Yam a Ham a Spam b
Spam b

Yam
Yam a Ham a Lamb b
Lamb b

Copyright 2008 by Pearson Education
19

Casting references
�  A variable can only call that type's methods, not a subtype's.

 Employee ed = new Lawyer();
 int hours = ed.getHours(); // ok; this is in Employee
 ed.sue(); // compiler error

�  The compiler's reasoning is, variable ed could store any kind of
employee, and not all kinds know how to sue .

�  To use Lawyer methods on ed, we can type-cast it.

 Lawyer theRealEd = (Lawyer) ed;
 theRealEd.sue(); // ok

 ((Lawyer) ed).sue(); // shorter version

Copyright 2008 by Pearson Education
20

More about casting
�  The code crashes if you cast an object too far down the tree.

 Employee eric = new Secretary();
 ((Secretary) eric).takeDictation("hi"); // ok
 ((LegalSecretary) eric).fileLegalBriefs(); // exception

 // (Secretary object doesn't know how to file briefs)

�  You can cast only up and down the tree, not sideways.

 Lawyer linda = new Lawyer();
 ((Secretary) linda).takeDictation("hi"); // error

�  Casting doesn't actually change the object's behavior.
It just gets the code to compile/run.

 ((Employee) linda).getVacationForm() // pink (Lawyer's)

