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Building Java Programs 

Chapter 9 
Lecture 9-3: Polymorphism 

 
reading: 9.3 
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Polymorphism 
�  polymorphism: Ability for the same code to be used with 

different types of objects and behave differently with each. 
 
�  System.out.println can print any type of object. 

�  Each one displays in its own way on the console. 

�  CritterMain can interact with any type of critter. 
�  Each one moves, fights, etc. in its own way. 
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Coding with polymorphism 
�  A variable of type T can hold an object of any subclass of T. 

 
 Employee ed = new Lawyer(); 
 

�  You can call any methods from the Employee class on ed. 

�  When a method is called on ed, it behaves as a Lawyer. 
 
 System.out.println(ed.getSalary());         // 50000.0 
 System.out.println(ed.getVacationForm());   // pink 
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Polymorphism and parameters 
�  You can pass any subtype of a parameter's type. 

 
 

public class EmployeeMain { 
    public static void main(String[] args) { 
        Lawyer lisa = new Lawyer(); 
        Secretary steve = new Secretary(); 
        printInfo(lisa); 
        printInfo(steve); 
    } 

  

    public static void printInfo(Employee empl) { 
        System.out.println("salary: " + empl.getSalary()); 
        System.out.println("v.days: " + empl.getVacationDays()); 
        System.out.println("v.form: " + empl.getVacationForm()); 
        System.out.println(); 
    } 
} 
 
OUTPUT: 
 

salary: 50000.0  salary: 50000.0 
v.days: 15  v.days: 10 
v.form: pink  v.form: yellow 
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Polymorphism and arrays 
�  Arrays of superclass types can store any subtype as elements. 

 

public class EmployeeMain2 { 
    public static void main(String[] args) { 
        Employee[] e = { new Lawyer(),   new Secretary(),  
                         new Marketer(), new LegalSecretary() }; 
 

        for (int i = 0; i < e.length; i++) { 
            System.out.println("salary: " + e[i].getSalary()); 
            System.out.println("v.days: " + e[i].getVacationDays()); 
            System.out.println(); 
        } 
    } 
} 
 
Output: 
 

salary: 50000.0 
v.days: 15 
 

salary: 50000.0 
v.days: 10 
 

salary: 60000.0 
v.days: 10 
 

salary: 55000.0 
v.days: 10 
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Polymorphism problems 
�  4-5 classes with inheritance relationships are shown. 

�  A client program calls methods on objects of each class. 

�  You must read the code and determine the client's output. 

�  We always put such a question on our final exams! 
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A polymorphism problem 
�  Suppose that the following four classes have been declared: 

 

public class Foo { 
    public void method1() { 
        System.out.println("foo 1"); 
    } 
 

    public void method2() { 
        System.out.println("foo 2"); 
    } 
 

    public String toString() { 
        return "foo"; 
    } 
} 
 

public class Bar extends Foo { 
    public void method2() { 
        System.out.println("bar 2"); 
    } 
} 
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A polymorphism problem 
public class Baz extends Foo { 
    public void method1() { 
        System.out.println("baz 1"); 
    } 
 

    public String toString() { 
        return "baz"; 
    } 
} 
 

public class Mumble extends Baz { 
    public void method2() { 
        System.out.println("mumble 2"); 
    } 
} 
 

�  What would be the output of the following client code? 
 

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()}; 
for (int i = 0; i < pity.length; i++) { 
    System.out.println(pity[i]); 
    pity[i].method1(); 
    pity[i].method2(); 
    System.out.println(); 
} 
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�  Add classes from top (superclass) to bottom (subclass). 

�  Include all inherited methods. 

Diagramming the classes 
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Finding output with tables 

method Foo Bar Baz Mumble 

method1 

method2 

toString 

method Foo Bar Baz Mumble 

method1 foo 1 baz 1 

method2 foo 2 bar 2 mumble 2 

toString foo baz 

method Foo Bar Baz Mumble 

method1 foo 1 foo 1 baz 1 baz 1 

method2 foo 2 bar 2 foo 2 mumble 2 

toString foo foo baz baz 
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Polymorphism answer 
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()}; 
for (int i = 0; i < pity.length; i++) { 
    System.out.println(pity[i]); 
    pity[i].method1(); 
    pity[i].method2(); 
    System.out.println(); 
} 
 

�  Output: 
baz 
baz 1 
foo 2 
 

foo 
foo 1 
bar 2 
 

baz 
baz 1 
mumble 2 
 

foo 
foo 1 
foo 2 
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Another problem 
�  The order of the classes is jumbled up. 
�  The methods sometimes call other methods (tricky!). 

 
 

public class Lamb extends Ham { 
    public void b() { 
        System.out.print("Lamb b   "); 
    } 
} 
 

public class Ham { 
    public void a() { 
        System.out.print("Ham a   "); 
        b(); 
    } 
 

    public void b() { 
        System.out.print("Ham b   "); 
    } 
 

    public String toString() { 
        return "Ham"; 
    } 
} 
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Another problem 2 
public class Spam extends Yam { 
    public void b() { 
        System.out.print("Spam b   "); 
    } 
} 
 

public class Yam extends Lamb { 
    public void a() { 
        System.out.print("Yam a   "); 
        super.a(); 
    } 
 

    public String toString() { 
        return "Yam"; 
    } 
} 
 

�  What would be the output of the following client code? 
 

Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()}; 
for (int i = 0; i < food.length; i++) { 
    System.out.println(food[i]); 
    food[i].a(); 
    System.out.println();     // to end the line of output 
    food[i].b(); 
    System.out.println();     // to end the line of output 
    System.out.println(); 
} 
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Class diagram 
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Polymorphism at work 
�  Lamb inherits Ham's a.  a calls b.  But Lamb overrides b... 

 

public class Ham { 
    public void a() { 
        System.out.print("Ham a   "); 
        b(); 
    } 
 

    public void b() { 
        System.out.print("Ham b   "); 
    } 
 

    public String toString() { 
        return "Ham"; 
    } 
} 
 
public class Lamb extends Ham { 
    public void b() { 
        System.out.print("Lamb b   "); 
    } 
} 
 

�  Lamb's output from a: 
Ham a   Lamb b 
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The table 
method Ham Lamb Yam Spam 

a 

b 

toString 

method Ham Lamb Yam Spam 

a Ham a 

b() 
Yam a 

Ham a 
b() 

b Ham b Lamb b Spam b 

toString Ham Yam 

method Ham Lamb Yam Spam 

a Ham a 

b() 
Ham a 

b() 
Yam a 

Ham a 
b() 

Yam a 

Ham a 
b() 

b Ham b Lamb b Lamb b Spam b 

toString Ham Ham Yam Yam 
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The answer 
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()}; 
for (int i = 0; i < food.length; i++) { 
    System.out.println(food[i]); 
    food[i].a(); 
    food[i].b(); 
    System.out.println(); 
} 

 

�  Output: 
Ham 
Ham a   Lamb b 
Lamb b 
 

Ham 
Ham a   Ham b 
Ham b 
 

Yam 
Yam a   Ham a   Spam b 
Spam b 
 

Yam 
Yam a   Ham a   Lamb b 
Lamb b 
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Casting references 
�  A variable can only call that type's methods, not a subtype's. 

 
 Employee ed = new Lawyer(); 
 int hours = ed.getHours();  // ok; this is in Employee 
 ed.sue();                   // compiler error 
 

�  The compiler's reasoning is, variable ed could store any kind of 
employee, and not all kinds know how to sue . 

�  To use Lawyer methods on ed, we can type-cast it. 
 

 Lawyer theRealEd = (Lawyer) ed; 
 theRealEd.sue();                  // ok 

 

 ((Lawyer) ed).sue();              // shorter version 
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More about casting 
�  The code crashes if you cast an object too far down the tree. 

 
 Employee eric = new Secretary(); 
 ((Secretary) eric).takeDictation("hi");     // ok 
 ((LegalSecretary) eric).fileLegalBriefs();  // exception 
  

 //  (Secretary object doesn't know how to file briefs) 
 

�  You can cast only up and down the tree, not sideways. 
 

 Lawyer linda = new Lawyer(); 
 ((Secretary) linda).takeDictation("hi");    // error 
 

�  Casting doesn't actually change the object's behavior. 
It just gets the code to compile/run. 

 

 ((Employee) linda).getVacationForm()    // pink (Lawyer's) 


