
Tadayoshi Kohno

CSE P 590 / CSE M 590 (Spring 2010)

Computer Security and Privacy

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Crypto
• PKIs
• Protocols
• SSL

 Users (some more)
 Anonymity
 Research reading

 Lab 1 -- May 17
 HW 3 -- announced soon (due date not May 14)

Public Key Cryptography

Advantages of Public-Key Crypto

 Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before they
can exchange secret messages

– Caveats to come

 Authentication without shared secrets
• Use digital signatures to prove the origin of messages

 Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

 Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

 Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

 Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

Exponentiation

 How to compute Mx mod N?
 Say, x = 13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N // y = M

• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M3)2 = M6

• y = y2 * M mod N // y = (M6)2 *M = M12+1 = M13 = Mx

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1,
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1

Timing attacks

 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has
distribution with “small” variance (due to time for final
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has
distribution with “large” variance (due to time for final
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really

small, ...)

 Strategy: Force user to sign large number of messages
M1, M2, Record timings for signing.

 Iteratively learn bits of key by using above property.

PKIs

PKI Overview

Alice, Bob, Charlie, ..., trust Certificate Authority

CA signs certificates binding Alice’s identity with
her public key:

• Certificate = Alice, PKAlice, ..., Sign(PKCA, “Alice,
PKAlice, ...”)

X.509 Authentication Service

 Internet standard (1988 onward)
 Specifies certificate format

• X.509 certificates are used in IPSec and SSL/TLS

 Specifies certificate directory service
• For retrieving other users’ CA-certified public keys

 Specifies a set of authentication protocols
• For proving identity using public-key signatures

 Does not specify crypto algorithms
• Can use it with any digital signature scheme and hash

function, but hashing is required before signing

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

 Revocation is very important
 Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and CA
no longer wishes to certify him

• CA’s private key has been compromised!

 Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

 Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

 Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit card
numbers

• Can issue a “delta CRL” containing only updates

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

Some Protocols

X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message))

 Encrypt, then sign
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control (for

next slide: assume one password for whole system)

 Does this work?

Attack on X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

 Receiving encrypted password under signature does not
mean that the sender actually knows the password!

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password))

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature

2. Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

sigK(x)

PRIVATE
KEY K

sigK(x)

One key recommendation: Don’t use same public key / secret key pair for
multiple applications. (Or make sure messages have different formats
across applications.)

Secure Sessions

 Secure sessions are among the most important
applications in network security
• Enable us to talk securely on an insecure network

 Goal: secure bi-directional communication channel
between two parties
• The channel must provide confidentiality

– Third party cannot read messages on the channel

• The channel must provide authentication
– Each party must be sure who the other party is

• Other desirable properties: integrity, protection against denial
of service, anonymity against eavesdroppers

Key Establishment Protocols

 Common implementation of secure sessions:
• Establish a secret key known only to two parties
• Then use block ciphers for confidentiality, HMAC for

authentication, and so on

 Challenge: how to establish a secret key
• Using only public information?
• Even if the two parties share a long-term secret, a fresh key

should be created for each session
– Long-term secrets are valuable; want to use them as sparingly as

possible to limit exposure and the damage if the key is compromised

 (Background: For N parties, there are N choose 2 =
N*(N-1)/2 pairs of parties.)

Key Establishment Techniques

 Use a trusted key distribution center (KDC)
• Every party shares a pairwise secret key with KDC
• KDC creates a new random session key and then distributes

it, encrypted under the pairwise keys
– Example: Kerberos

 Use public-key cryptography
• Diffie-Hellman authenticated with signatures

– Example: IKE (Internet Key Exchange)

• One party creates a random key, sends it encrypted under
the other party’s public key

– Example: TLS (Transport Layer Security)

Early Version of SSL (Simplified)

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB
(“Alice”, sigAlice(NB))

fresh session key

encryptKAB
(NB)

fresh random number

 Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows her

private key… Alice must have signed NB… NB is fresh and random and I
sent it encrypted under KAB… Alice could have learned NB only if she
knows KAB… She must be the person who sent me KAB in the first
message...

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC
(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

encryptKCB
(“Alice”, sigAlice(NB))

 Charlie uses his legitimate conversation with Alice to
impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Denning-Sacco Protocol

Alice Bob

“I’m Alice”, certAlice, certBob,

encryptPublicKey(Bob)(sigAlice(TimeAlice, KAB),

 (TimeAlice, KAB))

 Goal: establish a new shared key KAB with the help of
a trusted certificate service

Certificate server
“Alice”, “Bob”

certAlice, certBob

“I’m Alice”, certAlice, certBob,

encryptPublicKey(Bob)(sigAlice(TimeAlice, KAC),

 (TimeAlice, KAC))

Attack on Denning-Sacco

Alice Bob
(with an evil side)

 Alice’s signature is insufficiently explicit
• Does not say to whom and why it was sent

 Alice’s signature can be used to impersonate her

Nothing in this
signature says that it

was sent to Bob!

Charlie

“I’m Alice”, certAlice,

certCharlie,

encryptPublicKey(Charlie)(

 sigAlice(TimeAlice, KAC),

 (TimeAlice, KAC))

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, want to talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice
(N1,“Bob”,KAB, EncryptKBob

(KAB,“Alice”))

ticket

ticket, EncryptKAB
(N2)

EncryptKAB
(N2-1, N3)

EncryptKAB
(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

(Recall: Differences between encryption and authenticated encryption.)

Reflection Attack

Bob

EncryptKAB
(N2-1, N3)

 Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB
(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB
(N3)

EncryptKAB
(N3-1, N4)Extract EncryptKAB

(N3-1)

Now successfully authenticate in first session…

EncryptKAB
(N3-1)

Alice’s ticket, EncryptKAB
(N2)

Replay an old message from Alice

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, wanna talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice
(N1,“Bob”,KAB, EncryptKBob

(KAB,“Alice”))

ticket

ticket, EncryptKAB
(N2)

EncryptKAB
(N2-1, N3)

EncryptKAB
(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

 Another issue: If learn KAB after session completes, then
can re-use. (Solution: timestamps, nonces.)

Public-Key Needham-Schroeder

Alice Bob

 EncryptPublicKey(Bob)(“Alice”, NA)

EncryptPublicKey(Alice)(NA, NB)

EncryptPublicKey(Bob)(NB)

Alice’s nonce

Bob’s nonce

Create new key from NA and NB, e.g., NA⊕NB

Alice’s reasoning:

• The only person who could know NA
 is the person who decrypted 1st message
• Only Bob can decrypt message encrypted with
 Bob’s public key
• Therefore, Bob is on the other end of the line
 Bob is authenticated!

Bob’s reasoning:

• The only way to learn NB is
 to decrypt 2nd message
• Only Alice can decrypt 2nd message
• Therefore, Alice is on the other end

Alice is authenticated!

EncryptPublicKey(Bob)(“Alice”, NA)

Evil Bob tricks honest Alice
into revealing Charlie’s
secret Nc (and already knew NA)

Charlie is convinced that he is talking to Alice!

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

EncryptPublicKey(Bob)(NC)

Bob can’t decrypt this message,
but he can replay it to Alice

EncryptPublicKey(Alice)(NA, NC)

Lessons of Needham-Schroeder

 This is yet another example of design challenges
• Alice is correct that Bob must have decrypted

EncryptPublicKey(Bob)(“Alice”, NA), but this does not mean that

EncryptPublicKey(Alice)(NA, NB) came from Bob

 It is important to realize limitations of protocols
• The attack requires that Alice willingly talk to attacker

– Attacker uses a legitimate conversation with Alice to impersonate Alice
to Charlie

SSL/TLS

What is SSL / TLS?

 Transport Layer Security (TLS) protocol, version 1.2
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide privacy

and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers (and mail readers
and ...)

 Based on Secure Sockets Layers (SSL) protocol,
version 3.0
• Same protocol design, different algorithms

 Deployed in all(?) Web browsers

SSL / TLS in the Real World

Application-Level Protection

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects againt application-level threats
(e.g.,server impersonation), NOT against IP-
level threats (spoofing, SYN flood, DDoS by
data flood)

History of the Protocol
 SSL 1.0

• Internal Netscape design, early 1994?
 SSL 2.0

• Published by Netscape, November 1994
• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

 TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of earlier MAC; can run on any port

 TLS 1.2
• Remove dependencies to MD5 and SHA1

“Request for Comments”

 Network protocols are usually disseminated in the
form of an RFC

 TLS version 1.2 is described in RFC 5246
 Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers who

will be implementing it and those who will be doing protocol
analysis

• Mixture of informal prose and pseudo-code

Evolution of the SSL/TLS RFC

15.00

31.25

47.50

63.75

80.00

SSL 2.0 SSL 3.0 TLS 1.0

Page count

104 pages for TLS 1.2

TLS Basics

 TLS consists of two protocols
• Familiar pattern for key exchange protocols

 Handshake protocol
• Use public-key cryptography to establish a shared secret

key between the client and the server

 Record protocol
• Use the secret key established in the handshake protocol

to protect communication between the client and the
server

We will focus on the handshake protocol

TLS Handshake Protocol

 Two parties: client and server
 Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of the

protocol

 Authenticate client and server (optional)
• Use digital certificates to learn each other’s public keys and

verify each other’s identity

 Use public keys to establish a shared secret

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished
switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and
received handshake messages

ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version
• Supported Cryptographic algorithms

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g., RSA or

Diffie-Hellman)

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by
 both client and server
• Strongest cryptographic suite selected
 from those offered by the client

ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer sends public-key certificate
containing either RSA, or
Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys
} ClientKeyExchange
struct {

 ProtocolVersion client_version;
 opaque random[46];
} PreMasterSecret

ClientKeyExchange (RFC)

Random bits from which
symmetric keys will be derived
(by hashing them with nonces)

“Core” SSL 3.0 Handshake (Not TLS)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

Version Rollback Attack

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking it is
communicating with a client who
supports only SSL 2.0

SSL 2.0 Weaknesses (Fixed in 3.0)

 Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

 SSL 2.0 uses padding when computing MAC in block
cipher modes, but padding length field is not
authenticated
• Attacker can delete bytes from the end of messages

 MAC uses only 40 bits in export mode
 No support for certificate chains or non-RSA

algorithms, no handshake while session is open

Protocol Rollback Attacks

Why do people release new versions of security
protocols? Because the old version got broken!

 New version must be backward-compatible
• Not everybody upgrades right away

 Attacker can fool someone into using the old, broken
version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

 Defense is hard: must authenticate version in early
designs

 Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)

Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left side
of this secret if server said
Versions=2.0

If “embedded” version information includes
eight 3s but server supports version 3, issue
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

2

2

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

Password Managers

• Idea: Software application that will store and
manage passwords for you.

• You remember one password.

• Each website sees a different password.

• Examples: PwdHash (Usenix Security 2005) and
Password Multiplier (WWW 2005).

Key ideas

• User remembers a single password

• Password managers

• On input: (1) the user’s single password and
(2) information about the website

• Compute: Strong, site-specific password

• Goal: Avoid problems with passwords

The problem
Alice needs passwords for all the websites that she visits

passwd passwd

passwd

Possible solutions

• Easy to remember: Use same password on all
websites. Use “weak” password.

- Poor security (don’t share password between
bank website and small website)

• More secure: Use different, strong passwords on
all websites.

- Hard to remember, unless write down.

Alternate solution:
Password managers

• Password managers handle creating and
“remembering” strong passwords

• Potentially:

• Easier for users

• More secure

• Examples:

• PwdHash (Usenix Security 2005)

• Password Multiplier (WWW 2005)

PwdHash Password Multiplier

@@ in front of passwords to
protect; or F2

sitePwd = Hash(pwd,domain)

Active with Alt-P or double-
click

sitePwd = Hash(usrname,
pwd, domain)

pwd@@

Prevent phishing attacks

Both solutions target simplicity and transparency.

Usenix 2006:
Usabilty testing

• Are these programs usable? If not, what are the
problems?

• Two main approaches for evaluating usability:

• Usability inspection (no users)

• Cognitive walk throughs

• Heuristic evaluation

• User study

• Controlled experiments

• Real usage

This paper stresses
need to observe real users

HCI is important!

Study details

• 26 participants, across various backgrounds (4
technical)

• Five assigned tasks per plugin

• Data collection

• Observational data (recording task outcomes,
difficulties, misconceptions)

• Questionnaire data (initial attitudes, opinions
after tasks, post questionnaires)

[Chiasson, van Oorschot, Biddle]

Task completion results

http://www.scs.carleton.ca/~schiasso/Chiasson_UsenixSecurity2006_PwdManagers.ppt

[Chiasson, van Oorschot, Biddle]

Questionnaire responses

http://www.scs.carleton.ca/~schiasso/Chiasson_UsenixSecurity2006_PwdManagers.ppt

[Chiasson, van Oorschot, Biddle]

Problem: Transparency

• Unclear to users whether actions successful or
not.

• Should be obvious when plugin activated.

• Should be obvious when password protected.

• Users feel that they should be able to know their
own password.

Problem: Mental model

Users seemed to have misaligned mental models

• Not understand that one needs to put “@@”
before each password to be protected.

• Think different passwords generated for each
session.

• Think successful when were not.

• Not know to click in field before Alt-P.

• PwdHash: Think passwords unique to them.

When “nothing works”

• Tendency to try all passwords

• A poor security choice.

• May make the use of PwdHash or Password
Multiplier worse than not using any password
manager.

• Usability problem leads to security vulnerabilities.

HCI is important!

