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Goals for Today

 User authentication

 Security reviews

 Asymmetric Crypto

 Research reading



What About Biometrics?

 Authentication:  What you are
 Unique identifying characteristics to authenticate user 

or create credentials
• Biological and physiological:  Fingerprints, iris scan
• Behaviors characteristics - how perform actions:  

Handwriting, typing, gait

 Advantages:
• Nothing to remember
• Passive
• Can’t share (generally)
• With perfect accuracy, could be fairly unique



Overview [Matsumoto]

Tsutomu Matsumoto’s image, from http://web.mit.edu/6.857/OldStuff/
Fall03/ref/gummy-slides.pdf 

Dashed lines for enrollment; solid for verification or identification



Biometric Error Rates (Non-Adversarial)

 “Fraud rate” vs. “insult rate”
• Fraud = system incorrectly accepts (false accept)
• Insult = system rejects valid user (false reject)

 Increasing acceptance threshold increases fraud rate, 
decreases insult rate

 For biometrics, U.K. banks set target fraud rate of 
1%, insult rate of 0.01%   [Ross Anderson]



Biometrics

 Face recognition (by a computer algorithm)
• Error rates up to 20%, given reasonable variations in 

lighting, viewpoint and expression

 Fingerprints
• Traditional method for identification
• 1911: first US conviction on fingerprint evidence
• U.K. traditionally requires 16-point match

– Probability of false match is 1 in 10 billion
– No successful challenges until 2000

• Fingerprint damage impairs recognition



Other Biometrics

 Iris scanning
• Irises are very random, but stable through life

– Different between the two eyes of the same individual

• 256-byte iris code based on concentric rings between the 
pupil and the outside of the iris

• Equal error rate better than 1 in a million
• Best biometric mechanism currently known

 Hand geometry
• Used in nuclear premises entry control, INSPASS 

(discontinued in 2002)



Other Biometrics

 Vein
• Pattern on back of hand

 Handwriting
 Typing

• Timings for character sequences

 Gait
 DNA



Issues with Biometrics

 Private, but not secret
• Maybe encoded on the back of an ID card?
• Maybe encoded on your glass, door handle, ...
• Sharing between multiple systems?

 Revocation is difficult (impossible?)
• Sorry, your iris has been compromised, please create a new 

one...

 Physically identifying
• Soda machine to cross-reference fingerprint with DMV?



Issues with Biometrics

 Collection error:  Criminal gives an inexperienced 
policeman fingerprints in the wrong order
• Record not found; gets off as a first-time offender

 Can be attacked using recordings
• Ross Anderson: in countries where fingerprints are used to 

pay pensions, there are persistent tales of “Granny’s finger 
in the pickle jar” being the most valuable property she 
bequeathed to her family

 Birthday paradox
• With false accept rate of 1 in a million, probability of false 

match is above 50% with only 1609 samples



Risks of Biometrics

http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm



Biometric Error Rates (Adversarial)

Want to minimize “fraud” and “insult” rate
• “Easy” to test probability of accidental misidentification 

(fraud)
• But what about adversarial fraud

– Besides stolen fingers

 An adversary might try to steal the biometric 
information
• Malicious fingerprint reader

– Consider when biometric is used to derive a cryptographic key

• Residual fingerprint on a glass



Voluntary:  Making a Mold

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]



Voluntary:  Making a Finger

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]



 Maybe a computer could also forge some biometrics

Authentication by Handwriting
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained
on handwriting samples



Human Verification
 Problem:

• Want to make it hard for spammers to automatically 
create many free email accounts

• Want to make it difficult for computers to automatically 
crawl some data repository

 Need a method for servers to distinguish between
• Human users
• Machine users

 Approach:  CAPTCHA
• Completely Automated Public Turing Test to Tell 

Computers and Humans Apart



CAPTCHAs

Yahoo Gmail

captcha.net

Idea:  “easy” for humans to read words in this 
picture, but “hard” for computers



Caveats

 Usability challenges with visual impairments
 Researchers studying how to break CAPTCHAs
 Some attackers don’t break CAPTCHAs; they hire or 

trick others







Phishing

 A form of social engineering
 Some comments here; more with research paper 

later



Experiments at Indiana University

 Reconstructed the social network by crawling sites like 
Facebook, MySpace, LinkedIn and Friendster

 Sent 921 Indiana University students a spoofed email 
that appeared to come from their friend

 Email redirected to a spoofed site inviting the user to 
enter his/her secure university credentials
• Domain name clearly distinct from indiana.edu

 72% of students entered their real credentials into 
the spoofed site

[Jagatic et al.]



More Details

 Control group:  15 of 94 (16%) entered personal 
information

 Social group:  349 of 487 (72%) entered personal 
information

 70% of responses within first 12 hours
 Adversary wins by gaining users’ trust



More Details

To Male To Female To Any

From Male 53% 78% 68%

From Female 68% 76% 73%

From Any 65% 77% 72%



More Details



More Details



Security Reviews



Security Reviews

 Summary of system
 Assets
 Adversaries and threats
 Potential weaknesses (possibly speculative)
 Potential defenses
 Risks
 Conclusions



Public Key Cryptography



Basic Problem

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
          2. Bob wants to authenticate himself

public key

public key

Alice Bob



Applications of Public-Key Crypto

 Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

 Digital signatures for authentication
• Can “sign” a message with your private key

 Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)



Diffie-Hellman Protocol (1976)

 Alice and Bob never met and share no secrets
 Public info: p and g

• p is a large prime number, g is a generator of Zp*

– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: 
   given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
   given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem: 
   given gx and gy, it’s hard to tell the difference 

between gxy mod p and gr mod p where r is random         



Properties of Diffie-Hellman
 Assuming DDH problem is hard, Diffie-Hellman 

protocol is a secure key establishment protocol against 
passive attackers
• Eavesdropper can’t tell the difference between established 

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

 Diffie-Hellman protocol (by itself) does not provide 
authentication



Properties of Diffie-Hellman
 DDH:  not true for integers mod p, but true for other 

groups
 DL problem in p can be broken down into DL problems for 

subgroups, if factorization of p-1 is known.
 Common recommendation:

• Choose p = 2q+1 where q is also a large prime.

• Pick a g that generates a subgroup of order q in Zp*

• (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key



Diffie-Hellman Protocol (1976)

 Alice and Bob never met and share no secrets
 Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for the 
subgroup of order q

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy) mod p Compute k=H((gx)y)=H(gxy) mod p



Requirements for Public-Key Encryption

 Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK given 

only public key PK

 Encryption: given plaintext M and public key PK, easy 
to compute ciphertext C=EPK(M)

 Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M



Some Number Theory Facts

 Euler totient function ϕ(n) where n≥1 is the number of 
integers in the [1,n] interval that are relatively prime 
to n
• Two numbers are relatively prime if their greatest common 

divisor (gcd) is 1

 Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

 Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

 Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

 Encryption of m:  c = me mod n
• Modular exponentiation by repeated squaring

 Decryption of c:   cd mod n = (me)d mod n = m



Why RSA Decryption Works
 e⋅d=1 mod ϕ(n)
 Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n, 

   med=m mod n



On RSA

 Encrypted message needs to be in interpreted as an 
integer less than n
• Reason:  Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.



Why Is RSA Secure?

 RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by 
taking eth root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but 
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n



Caveats

 e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to three 
people

– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

 Don’t use RSA directly for privacy!



Integrity in RSA Encryption
 Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard



OAEP (image from PKCS #1 v2.1)



Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob



RSA Signatures

 Public key is (n,e), private key is d
 To sign message m:  s = md mod n

• Signing and decryption are the same underlying operation in 
RSA

• It’s infeasible to compute s on m if you don’t know d

 To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify signatures 

produced with d (private key)

 In practice, also need padding & hashing
• Standard padding/hashing schemes exist for RSA signatures



Encryption and Signatures

 Often people think:  Encryption and decryption are 
inverses.

 That’s a common view
• True for the RSA primitive (underlying component)

 But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods



Digital Signature Standard (DSS)

 U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

 Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

 Public key: (p, q, g, y=gx mod p), private key: x
 Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract x 
(private key) from gx mod p (public key)



DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M



DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod p) 
mod q

Public key

If they match, signature is valid



Why DSS Verification Works (Skim)

 If (r,s) is a legitimate signature, then 
   r = (gk mod p) mod q  ;  s = k-1⋅(H(M)+x⋅r) mod q

 Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

 H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

 (gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

 Verify gH(M)⋅w⋅yr⋅w = r mod p mod q



Security of DSS

 Can’t create a valid signature without private key
 Given a signature, hard to recover private key
 Can’t change or tamper with signed message
 If the same message is signed twice, signatures are 

different
• Each signature is based in part on random secret k

 Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k, attacker 

can recover secret key x and forge any signature from then 
on

• Example problem scenario:  rebooted VMs; restarted 
embedded machines


