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Goals for Today

¢ User authentication
¢ Security reviews
¢ Asymmetric Crypto

¢ Research reading




What About Blometrlcs?

0 Authentlcatlon What you are
¢ Unique identifying characteristics to authenticate user
or create credentials
e Biological and physiological: Fingerprints, iris scan
e Behaviors characteristics - how perform actions:
Handwriting, typing, gait
¢ Advantages:
e Nothing to remember
e Passive
e Can't share (generally)
o With perfect accuracy, could be fairly unique




Overview [Matsumoto]
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Tsutomu Matsumoto’s image, from http://web.mit.edu/6.857/0O1dStuft/
Fall03/ref/gummy-slides.pdf

Dashed lines for enrollment; solid for verification or identification




Biometric Error Rates (Non-Adversarial)

® “Fraud rate” vs. “insult rate”
e Fraud = system incorrectly accepts (false accept)
e Insult = system rejects valid user (false reject)

® Increasing acceptance threshold increases fraud rate,
decreases insult rate

¢ For biometrics, U.K. banks set target fraud rate of
1%, insult rate of 0.01% [Ross Anderson]




Biometrics
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® Face recognition (by a computer algorithm)
e Error rates up to 20%, given reasonable variations in
lighting, viewpoint and expression
¢ Fingerprints
e Traditional method for identification
e 1911: first US conviction on fingerprint evidence

o U.K. traditionally requires 16-point match
— Probability of false match is 1 in 10 billion
— No successful challenges until 2000

 Fingerprint damage impairs recognition




Other Blometrlcs
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0 Ir|s scannlng

e Irises are very random, but stable through life
— Different between the two eyes of the same individual

o 256-byte iris code based on concentric rings between the
pupil and the outside of the iris

e Equal error rate better than 1 in a million
e Best biometric mechanism currently known
¢ Hand geometry

e Used in nuclear premises entry control, INSPASS
(discontinued in 2002)




Other Biometrics
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¢ Vein
e Pattern on back of hand
¢ Handwriting
¢ Typing
e Timings for character sequences
¢ Gait
¢ DNA
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Issues with Biometrics

¢ Private, but not secret
e Maybe encoded on the back of an ID card?
e Maybe encoded on your glass, door handle, ...
e Sharing between multiple systems?

¢ Revocation is difficult (impossible?)

e Sorry, your iris has been compromised, please create a new
one..

¢ Physically identifying
e Soda machine to cross-reference fingerprint with DMV?




Issues with Biometrics

@ Collection error: Criminal gives an inexperienced
policeman fingerprints in the wrong order

e Record not found; gets off as a first-time offender

¢ Can be attacked using recordings

e Ross Anderson: in countries where fingerprints are used to
pay pensions, there are persistent tales of “"Granny’s finger
in the pickle jar” being the most valuable property she
bequeathed to her family

@ Birthday paradox

o With false accept rate of 1 in a million, probability of false
match is above 50% with only 1609 samples




Risks of Biometrics
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Malaysia car thieves steal finger

By Jonathan Kent
BBC News, Kuala Lumpur

Police in Malaysia are hunting for members of
a violent gang who chopped off a car owner's
finger to get round the vehicle's hi-tech
security system.

The car, a Mercedes S-class, was protected by a
fingerprint recognition system.

Accountant K Kumaran's ordeal began when he
was run down by four men in a small car as he
was about to get into his Mercedes in a Kuala
Lumpur suburb.

http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm
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Biometric Error Rates (Adversarial)
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€ \Want to minimize “fraud” and “insult” rate

e “Easy” to test probability of accidental misidentification
(fraud)

e But what about adversarial fraud
— Besides stolen fingers

¢ An adversary might try to steal the biometric
information

o Malicious fingerprint reader
— Consider when biometric is used to derive a cryptographic key

e Residual fingerprint on a glass




Voluntary: Making a Mold
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[Matsumoto]

Put the plastic
into hot water

to soften it. Press a live finger

against it.

It takes around 10 minutes. The mold

http://web.mit.edu/6.857/01dStuff/Fall03/ref/gummy-slides.pdf




Voluntary: Making a Finger
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[Matsumoto]

R

Pour the liquid
into the mold.

Put it into
a refrigerator to cool.

It takes around 10 minutes. The gummy finger

http://web.mit.edu/6.857/01dStuff/Fall03/ref/gummy-slides.pdf
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[Ballard, Monrose, Lopresti]

¢ Maybe a computer could also forge some biometrics

target target target
QFC\,P}’\I'C \QJ\SUL&(}(; ANLS LS MMG%CW rils  currneits
human forgery _human forgery human forgery
\ ‘\
MQA%& uslc  mGone %Sewm}{ srcle tneank
— generative forgery generative torgery generative foEEry/

Generated by computer algorithm trained
on handwriting samples




Human Verlflcatlon

0 Problem

e Want to make it hard for spammers to automatically
create many free email accounts

e Want to make it difficult for computers to automatically
crawl some data repository

¢ Need a method for servers to distinguish between

e Human users
e Machine users

¢ Approach: CAPTCHA

o Completely Automated Public Turing Test to Tell
Computers and Humans Apart




CAPTCHAS

captcha.net

|dea: “easy” for humans to read words in this
picture, but “hard” for computers




Caveats

S Us;a.bility chaliénges w‘ithA \)isual irhpéi.rments‘ |
® Researchers studying how to break CAPTCHAS

® Some attackers don’t break CAPTCHAS; they hire or
trick others
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CAPTCHA image to 4 ,
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answer to completd hour for 50 hours a week? Anyone here who can think up a solution that does not

include drastically changing the global economy? How about captchas that require
cultural background knowledge to solve?"
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Four Indicted in CAPTCHA Hacks of Ticket Sites
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By Chloe Albanesius

Did you miss out on floor seats for Bruce Springsteen's July 2008 concert at

Gig =

How did they do it? Most online ticket Web sites like Ticketmaster employ

_FU CAPTCHA technologies, which reguires users to read images that are
INY recognizable to the human eye but confusing to computers, and type them
SNl into a box before buying tickets.

Tig

ve| The defendants, however, worked with computer programmers in Bulgaria to
Ju{ develop a technology that allowed a network of computers to impersonate

individual visitors to online ticket vendors. The ticket vendors did not
immediately recognize the purchases as computer-generated, so these
"CAPTCHA Bots" let Wiseguy Tickets to flood ticket vendors as soon as
tickets went on sale and purchase tickets faster than any human.
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¢ A form of social engineering

€ Some comments here; more with research paper
later




Experlments at Indlana Unlver5|ty

' [Jagatic et al.]

® Reconstructed the social network by crawling sites like
Facebook, MySpace, LinkedIn and Friendster

¢ Sent 921 Indiana University students a spoofed email
that appeared to come from their friend

¢ Email redirected to a spoofed site inviting the user to
enter his/her secure university credentials
e Domain name clearly distinct from indiana.edu

® 72% of students entered their real credentials into
the spoofed site




More Details

¢ Control group: 15 of 94 (16%) entered personal
information

@ Social group: 349 of 487 (72%) entered personal
information

® 70% of responses within first 12 hours
¢ Adversary wins by gaining users’ trust




More Details

To Male To Female To Any
From Male 53% 78% 68%
From Female 68% 76% 73%
From Any 65% 77% 72%




More Details
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More Details
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Security Reviews

¢ Summary of system

® Assets

® Adversaries and threats

¢ Potential weaknesses (possibly speculative)
¢ Potential defenses

® Risks

¢ Conclusions
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Public Key Cryptography
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Basic Problem

public key

public key 1 % e - private key

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself




Applications of Public-Key Crypto

¢ Encryption for confidentiality

e Anyone can encrypt a message
— With symmetric crypto, must know secret key to encrypt

e Only someone who knows private key can decrypt
o Key management is simpler (maybe)
— Secret is stored only at one site: good for open environments
# Digital signatures for authentication
e Can “sign” a message with your private key

® Session key establishment

e Exchange messages to create a secret session key
e Then switch to symmetric cryptography (why?)
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Diffie-Hellman Protocol (1976)

¢ Alice and Bob never met and share no secrets

# Public info: p and g
e pis a large prime number, g is a generator of Z*
- Z2,*={1, 2 ... p-1}; YaeZ* 3i such that a=g' mod p
— Modular arithmetic: nhumbers “wrap around” after they reach p

Pick secret, random X Pick secret, random Y

g% mod p ] _—

gY mod p

<€
Alice Bob

Compute k=(g¥)*=0g"Y mod p Compute k=(g*)Y=09"Y mod p




Why Is Diffie-Hellman Secure?

® Discrete Logarithm (DL) problem:

given g* mod p, it's hard to extract x
e There is no known efficient algorithm for doing this

e This is not enough for Diffie-Hellman to be secure!
¢ Computational Diffie-Hellman (CDH) problem:

given g* and @, it's hard to compute g*¥ mod p
e ... unless you know x or vy, in which case it's easy

® Decisional Diffie-Hellman (DDH) problem:

given g* and @Y, it's hard to tell the difference
between g% mod pand g" mod p Where r is random




Properties of Diffie-Hellman

4 ASsuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol against
passive attackers

e Eavesdropper can't tell the difference between established
key and a random value

e Can use new key for symmetric cryptography
— Approx. 1000 times faster than modular exponentiation
¢ Diffie-Hellman protocol (by itself) does not provide
authentication




Propertles of Diffie- HeIIman

* DDH not true for mtegers mod p, but true for other
groups

¢ DL problem in p can be broken down into DL problems for
subgroups, if factorization of p-1 is known.

€ Common recommendation:
e Choose p = 2g+1 where q is also a large prime.

» Pick a g that generates a subgroup of order g in Z *
e (OK to not know all the details of why for this course.)

o Hash output of DH key exchange to get the key




Diffie-Hellman Protocol (1976)

¢ Alice and Bob never met and share no secrets

@ Public info: p and ¢

e p, g are large prime numbers, p=2qg+1, g a generator for the
subgroup of order g
— Modular arithmetic: humbers “wrap around” after they reach p

Pick secret, random X X Pick secret, random Y
g” mod p
. ) © V
: gY mod p :
<€
Alice Bob

Compute k=H((g¥)*)=H(g"") mod p Compute k=H((g*)Y)=H(g*") mod p




Requirements for Public-Key Encryption

¢ Key generation: computationally easy to generate a
pair (public key PK, private key SK)

e Computationally infeasible to determine private key SK given
only public key PK

® Encryption: given plaintext M and public key PK, easy
to compute ciphertext C=E (M)

¢ Decryption: given ciphertext C=E, (M) and private

key SK, easy to compute plaintext M

e Infeasible to compute M from C without SK

e Even infeasible to learn partial information about M
e Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M




Some Number Theory Facts

¢ Euler totient function o(n) where n=1 is the number of

integers in the [1,n] interval that are relatively prime
ton

e Two numbers are relatively prime if their greatest common
divisor (gcd) is 1

@ Euler’s theorem:
if acZ_*, then a«(W=1 mod n

® Special case: Fermat’s Little Theorem
if p is prime and gcd(a,p)=1, then a?'=1 mod p




RSA Cry ptOSYStem [Rivest, Shamir, Adleman 1977]
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¢ Key generation:

e Generate large primes p, q
— Say, 1024 bits each (need primality testing, too)

e Compute n=pq and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = (d,n)
® Encryption of m: ¢ = m® mod n
e Modular exponentiation by repeated squaring

¢ Decryptionof ¢z c®mod n = (me&)¥mod n = m




Why RSA Decryptlon Works

* e d 1 mod cp(n)
® Thus e-d=1+k-@(n)=1+k(p-1)(g-1) for some k

¢ Let m be any integer in Z,
¢ If gcd(m,p)=1, then me‘=m mod p
e By Fermat’s Little Theorem, mP1=1 mod p
e Raise both sides to the power k(g-1) and multiply by m
o mitkp-1)a-1)=m mod p, thus m&=m mod p
e By the same argument, m¢‘=m mod g
¢ Since p and g are distinct primes and p-g=n,
meéd=m mod n
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® Encrypted message needs to be in interpreted as an
integer less than n

e Reason: Otherwise can’t decrypt.
e Message is very often a symmetric encryption key.




Why Is RSA Secure?

given n=pq, e such that

gcd(e,(p-1)(g-1))=1 and ¢, find m such that

me=c mod n
e j.e. recover m from ciphertext c and public key (n,e) by
taking et root of ¢

e There is no known efficient algorithm for doing this

¢ problem: given positive integer n, find
primes py, ..., P, such that n=p,c1p,2...p, &

@ If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA

o It may be possible to break RSA without factoring n
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® e =3 is a common exponent
e If m < n¥3, then c = m3 < n and can just take the cube
root of ¢ to recover m
— Even problems if “"pad” m in some ways [Hastad]
e Let ¢ = m3 mod ni - same message is encrypted to three
people
— Adversary can compute m3 mod ninz2ns (using CRT)
— Then take ordinary cube root to recover m

® Don’t use RSA directly for privacy!




Integrity in RSA Encryption

# Plain RSA does not provide integrity
o Given encryptions of m; and m,, attacker can create
encryption of m,-m,
— (my¢) - (m,#) mod n = (m,;-m,)® mod n
e Attacker can convert m into mk without decrypting
— (M) mod n = (m*)® mod n
@ In practice, OAEP is used: instead of encrypting M,
encrypt MOG(r) ; roH(M®G(r))
e ris random and fresh, G and H are hash functions

e Resulting encryption is plaintext-aware: infeasible to
compute a valid encryption without knowing plaintext
— ... if hash functions are “good” and RSA problem is hard




OAEP (image from PKCS #1 v2.1)
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Digital Signatures: Basic Idea

public key
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Alice Bob

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

private key

==




RSA Slgnatures

0 PUb|IC key IS (n e), prlvate key IS d

¢ To sign message m: s = m“ mod n

e Signing and decryption are the same underlying operation in
RSA

e It's infeasible to compute s on m if you don't know d
¢ To verify signature s on message m:

scmodn=(mY)e modn=m

e Just like encryption

e Anyone who knows n and e (public key) can verify signatures
produced with d (private key)

¢ In practice, also need padding & hashing
e Standard padding/hashing schemes exist for RSA signatures




Encryption and Signatures

¢ Often people think: Encryption and decryption are
Inverses.

¢ That's a common view
e True for the RSA primitive (underlying component)
¢ But not one we'll take

e To really use RSA, we need padding
e And there are many other decryption methods




Digital Signature Standard (DSS)

¢ U.S. government standard (1991-94)
o Modification of the ElGamal signature scheme (1985)

¢ Key generation:

e Generate large primes p, g such that g divides p-1

e Select heZ,* and compute g=h{P-1/a mod p
e Select random x such 1=<x=g-1, compute y=g* mod p

® Public key: (p, a, g, y=0* mod p), private key: x

® Security of DSS requires hardness of discrete log

o If could solve discrete logarithm problem, would extract x
(private key) from g* mod p (public key)
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Random secret Fk

between 0 and q

Pqgsg

AT
S

Compute r = (g«

mod p) mod g

>

Message % M

Hash function
(SHA-1)

Private key

X q

>. (r,s) is the

signature on M

Compute s = k'l

-(H(M)+x:r) mod g




DSS: Verifying a Signature (Skim)

Public key

A

Compute (gH(M’)W . yr’W mod q mod p)

f \
Y qsg mod g
H
Message !: M' O

, q
s' —‘ f f
Signature ¥-< - Vv
r'

Compute w = s mod q

p- Compare

If they match, signature is valid




Why DSS Verification Works (Skim)

@ If (r,s) is a legitimate signature, then
r = (g modp) modq ; S = k1-(HM)+XxT) mod q

® Thus H(M) = -x-r+k-s mod q

e Multiply both sides by w=s" mod q
® HM)'w + X-rw = K mod q

e Exponentiate g to both sides
¢ (gH(M).W + X-rW — gk) mod p mod g

e In a valid signature, g8 modpmodq = I, §QX modp = Y
@ Verify gHMW.yrW = r mod p mod q
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¢ Can't create a valid signature without private key

¢ Given a signature, hard to recover private key

¢ Can't change or tamper with signed message

¢ If the same message is signed twice, signatures are

different
e Each signature is based in part on random secret k

® Secret k must be different for each signature!

o If k is leaked or if two messages re-use the same k, attacker
can recover secret key x and forge any signature from then
on

e Example problem scenario: rebooted VMs; restarted
embedded machines




