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Goals for Today

 User authentication

 Security reviews

 Asymmetric Crypto

 Research reading



What About Biometrics?

 Authentication:  What you are
 Unique identifying characteristics to authenticate user 

or create credentials
• Biological and physiological:  Fingerprints, iris scan
• Behaviors characteristics - how perform actions:  

Handwriting, typing, gait

 Advantages:
• Nothing to remember
• Passive
• Can’t share (generally)
• With perfect accuracy, could be fairly unique



Overview [Matsumoto]

Tsutomu Matsumoto’s image, from http://web.mit.edu/6.857/OldStuff/
Fall03/ref/gummy-slides.pdf 

Dashed lines for enrollment; solid for verification or identification



Biometric Error Rates (Non-Adversarial)

 “Fraud rate” vs. “insult rate”
• Fraud = system incorrectly accepts (false accept)
• Insult = system rejects valid user (false reject)

 Increasing acceptance threshold increases fraud rate, 
decreases insult rate

 For biometrics, U.K. banks set target fraud rate of 
1%, insult rate of 0.01%   [Ross Anderson]



Biometrics

 Face recognition (by a computer algorithm)
• Error rates up to 20%, given reasonable variations in 

lighting, viewpoint and expression

 Fingerprints
• Traditional method for identification
• 1911: first US conviction on fingerprint evidence
• U.K. traditionally requires 16-point match

– Probability of false match is 1 in 10 billion
– No successful challenges until 2000

• Fingerprint damage impairs recognition



Other Biometrics

 Iris scanning
• Irises are very random, but stable through life

– Different between the two eyes of the same individual

• 256-byte iris code based on concentric rings between the 
pupil and the outside of the iris

• Equal error rate better than 1 in a million
• Best biometric mechanism currently known

 Hand geometry
• Used in nuclear premises entry control, INSPASS 

(discontinued in 2002)



Other Biometrics

 Vein
• Pattern on back of hand

 Handwriting
 Typing

• Timings for character sequences

 Gait
 DNA



Issues with Biometrics

 Private, but not secret
• Maybe encoded on the back of an ID card?
• Maybe encoded on your glass, door handle, ...
• Sharing between multiple systems?

 Revocation is difficult (impossible?)
• Sorry, your iris has been compromised, please create a new 

one...

 Physically identifying
• Soda machine to cross-reference fingerprint with DMV?



Issues with Biometrics

 Collection error:  Criminal gives an inexperienced 
policeman fingerprints in the wrong order
• Record not found; gets off as a first-time offender

 Can be attacked using recordings
• Ross Anderson: in countries where fingerprints are used to 

pay pensions, there are persistent tales of “Granny’s finger 
in the pickle jar” being the most valuable property she 
bequeathed to her family

 Birthday paradox
• With false accept rate of 1 in a million, probability of false 

match is above 50% with only 1609 samples



Risks of Biometrics

http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm



Biometric Error Rates (Adversarial)

Want to minimize “fraud” and “insult” rate
• “Easy” to test probability of accidental misidentification 

(fraud)
• But what about adversarial fraud

– Besides stolen fingers

 An adversary might try to steal the biometric 
information
• Malicious fingerprint reader

– Consider when biometric is used to derive a cryptographic key

• Residual fingerprint on a glass



Voluntary:  Making a Mold

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]



Voluntary:  Making a Finger

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf

[Matsumoto]



 Maybe a computer could also forge some biometrics

Authentication by Handwriting
[Ballard, Monrose, Lopresti]

Generated by computer algorithm trained
on handwriting samples



Human Verification
 Problem:

• Want to make it hard for spammers to automatically 
create many free email accounts

• Want to make it difficult for computers to automatically 
crawl some data repository

 Need a method for servers to distinguish between
• Human users
• Machine users

 Approach:  CAPTCHA
• Completely Automated Public Turing Test to Tell 

Computers and Humans Apart



CAPTCHAs

Yahoo Gmail

captcha.net

Idea:  “easy” for humans to read words in this 
picture, but “hard” for computers



Caveats

 Usability challenges with visual impairments
 Researchers studying how to break CAPTCHAs
 Some attackers don’t break CAPTCHAs; they hire or 

trick others







Phishing

 A form of social engineering
 Some comments here; more with research paper 

later



Experiments at Indiana University

 Reconstructed the social network by crawling sites like 
Facebook, MySpace, LinkedIn and Friendster

 Sent 921 Indiana University students a spoofed email 
that appeared to come from their friend

 Email redirected to a spoofed site inviting the user to 
enter his/her secure university credentials
• Domain name clearly distinct from indiana.edu

 72% of students entered their real credentials into 
the spoofed site

[Jagatic et al.]



More Details

 Control group:  15 of 94 (16%) entered personal 
information

 Social group:  349 of 487 (72%) entered personal 
information

 70% of responses within first 12 hours
 Adversary wins by gaining users’ trust



More Details

To Male To Female To Any

From Male 53% 78% 68%

From Female 68% 76% 73%

From Any 65% 77% 72%



More Details



More Details



Security Reviews



Security Reviews

 Summary of system
 Assets
 Adversaries and threats
 Potential weaknesses (possibly speculative)
 Potential defenses
 Risks
 Conclusions



Public Key Cryptography



Basic Problem

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
          2. Bob wants to authenticate himself

public key

public key

Alice Bob



Applications of Public-Key Crypto

 Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

 Digital signatures for authentication
• Can “sign” a message with your private key

 Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)



Diffie-Hellman Protocol (1976)

 Alice and Bob never met and share no secrets
 Public info: p and g

• p is a large prime number, g is a generator of Zp*

– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: 
   given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
   given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem: 
   given gx and gy, it’s hard to tell the difference 

between gxy mod p and gr mod p where r is random         



Properties of Diffie-Hellman
 Assuming DDH problem is hard, Diffie-Hellman 

protocol is a secure key establishment protocol against 
passive attackers
• Eavesdropper can’t tell the difference between established 

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

 Diffie-Hellman protocol (by itself) does not provide 
authentication



Properties of Diffie-Hellman
 DDH:  not true for integers mod p, but true for other 

groups
 DL problem in p can be broken down into DL problems for 

subgroups, if factorization of p-1 is known.
 Common recommendation:

• Choose p = 2q+1 where q is also a large prime.

• Pick a g that generates a subgroup of order q in Zp*

• (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key



Diffie-Hellman Protocol (1976)

 Alice and Bob never met and share no secrets
 Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for the 
subgroup of order q

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy) mod p Compute k=H((gx)y)=H(gxy) mod p



Requirements for Public-Key Encryption

 Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK given 

only public key PK

 Encryption: given plaintext M and public key PK, easy 
to compute ciphertext C=EPK(M)

 Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M



Some Number Theory Facts

 Euler totient function ϕ(n) where n≥1 is the number of 
integers in the [1,n] interval that are relatively prime 
to n
• Two numbers are relatively prime if their greatest common 

divisor (gcd) is 1

 Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

 Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

 Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

 Encryption of m:  c = me mod n
• Modular exponentiation by repeated squaring

 Decryption of c:   cd mod n = (me)d mod n = m



Why RSA Decryption Works
 e⋅d=1 mod ϕ(n)
 Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n, 

   med=m mod n



On RSA

 Encrypted message needs to be in interpreted as an 
integer less than n
• Reason:  Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.



Why Is RSA Secure?

 RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by 
taking eth root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but 
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n



Caveats

 e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to three 
people

– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

 Don’t use RSA directly for privacy!



Integrity in RSA Encryption
 Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard



OAEP (image from PKCS #1 v2.1)



Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob



RSA Signatures

 Public key is (n,e), private key is d
 To sign message m:  s = md mod n

• Signing and decryption are the same underlying operation in 
RSA

• It’s infeasible to compute s on m if you don’t know d

 To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify signatures 

produced with d (private key)

 In practice, also need padding & hashing
• Standard padding/hashing schemes exist for RSA signatures



Encryption and Signatures

 Often people think:  Encryption and decryption are 
inverses.

 That’s a common view
• True for the RSA primitive (underlying component)

 But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods



Digital Signature Standard (DSS)

 U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

 Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

 Public key: (p, q, g, y=gx mod p), private key: x
 Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract x 
(private key) from gx mod p (public key)



DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M



DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod p) 
mod q

Public key

If they match, signature is valid



Why DSS Verification Works (Skim)

 If (r,s) is a legitimate signature, then 
   r = (gk mod p) mod q  ;  s = k-1⋅(H(M)+x⋅r) mod q

 Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

 H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

 (gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

 Verify gH(M)⋅w⋅yr⋅w = r mod p mod q



Security of DSS

 Can’t create a valid signature without private key
 Given a signature, hard to recover private key
 Can’t change or tamper with signed message
 If the same message is signed twice, signatures are 

different
• Each signature is based in part on random secret k

 Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k, attacker 

can recover secret key x and forge any signature from then 
on

• Example problem scenario:  rebooted VMs; restarted 
embedded machines


