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Goals for Today

 Software Security (Continued)
• More attacks / issues
• Defensive directions

 Cryptography (Intro)
• Background / history / context / overview

 Research:  IMDs



TOCTOU

 TOCTOU == Time of Check to Time of Use

 Goal:  Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat 

and open (and access files he or she shouldn’t)

int openfile(char *path) { 
struct stat s; 
if (stat(path, &s) < 0) 

return -1; 
if (!S_ISRREG(s.st_mode)) { 

error("only allowed to regular files!"); 
return -1; 

} 
return open(path, O_RDONLY); 

}



Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of input 
into buf

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)



Integer Overflow and Implicit Cast

 What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);



Next

 Randomness
 Timing Attacks



Randomness issues

 Many applications (especially security ones) require 
randomness

 Explicit uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

 Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting 

machine)
• Shuffle cards (for an online gambling site)



C’s rand() Function

 C has a built-in random function:  rand()
unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 

next = seed;

} 

 Problem:  don’t use rand() for security-critical 
applications!
• Given a few sample outputs, you can predict subsequent 

ones





Problems in Practice

 One institution used (something like) rand() to 
generate passwords for new users
• Given your password, you could predict the passwords of 

other users

 Kerberos (1988 - 1996)
• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon 

Kerberos for authentication

 Online gambling websites
• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?



Images from http://www.cigital.com/news/index.php?pg=art&artid=20
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Big news...  CNN, etc..



Other Problems

 Live CDs, diskless clients
• May boot up in same state every time

 Virtual Machines
• Save state:  Opportunity for attacker to inspect the 

pseudorandom number generator’s state
• Restart:  May use same “psuedorandom” value more than 

once



Obtaining Pseudorandom Numbers

 For security applications, want “cryptographically 
secure pseudorandom numbers”

 Libraries include:
• OpenSSL
• Microsoft’s Crypto API

 Linux:
• /dev/random
• /dev/urandom

 Internally:
• Pool from multiple sources (interrupt timers, 

keyboard, ...)
• Physical sources (radioactive decay, ...)



Timing Attacks

 Assume there are no “typical” bugs in the software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing 
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against



Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long

 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Attacker Model
PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some 
standard interface

 Naive:  Try all 2568 = 18,446,744,073,709,551,616 
possibilities



Attacker Model
PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some 
standard interface

 Naive:  Try all 2568 = 18,446,744,073,709,551,616 
possibilities

 Better:  Time how long it takes to reject a 
CandidatePasswd.  Then try all possibilities for first 
character, then second, then third, ....
• Total tries:  256*8 = 2048



Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products



Next

 Defensive directions



Toward Preventing Buffer Overflow

 Use safe programming languages, e.g., Java and C#
• What about legacy C code?

 Static/dynamic analysis of source code to find 
overflows

 Black-box testing with long strings
 Mark stack as non-executable
 Randomize stack location or encrypt return address on 

stack by XORing with random string
• Attacker won’t know what address to use in his or her string

 Run-time checking of array and buffer bounds
• StackGuard, libsafe, many other tools

 Example companies:  Fortify, Coverity



Non-Executable Stack

 NX bit for pages in memory
• Modern Intel and AMD processors support
• Modern OS support as well

 Some applications need executable stack
• For example, LISP interpreters

 Does not defend against return-to-libc exploits
• Overwrite return address with the address of an existing 

library function (can still be harmful)

 …nor against heap overflows
 …nor changing stack internal variables (auth flag, ...)



 Embed “canaries” in stack frames and verify their 
integrity prior to function return
• Any overflow of local variables will damage the canary

 Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

 Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

buf

Run-Time Checking: StackGuard

ret/IPSaved FPbuf Caller’s stack frame

ret/IPSaved FP Caller’s stack frame0000canary



StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function 

return causes a performance penalty
 PointGuard also places canaries next to function 

pointers and setjmp buffers
• Worse performance penalty

 StackGuard doesn’t completely solve the problem (can 
be defeated) 



Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and 
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy 
BadPointer here



PointGuard

 Attack: overflow a function pointer so that it points to 
attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from 

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will 

dereference to a “random” memory address
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CPU
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Fuzz Testing

 Generate “random” inputs to program
 See if program crashes

• If crashes, found a bug
• Bug may be exploitable

 Surprisingly effective

 Now standard part of development lifecycle

 Sometimes conforming to input structures (file 
formats, etc)



Principles

 Check inputs



Principles

 Least privilege



Principles

 Check all return values



Principles

 Securely clear memory (passwords, keys, etc)



Principles

 Failsafe defaults



Principles

 Defense in depth



Principles

 Reduce size of TCB

 Simplicity

 Modularity



Principles

 Open design?  Open source?
 Maybe...

 Linux Kernel Backdoor Attempt:  http://
www.freedom-to-tinker.com/?p=472

 PGP Corporation:  http://www.pgp.com/developers/
sourcecode/index.html 



Vulnerability Analysis and Disclosure

 What should you think about before analyzing the 
security of a real system?

 What do you do if you’ve found a security problem 
in a real system?

 Say
• Electronic voting machine?
• Airplane?
• iPhone?
• IRS website?
• Medical device?



Next

 Cryptography Overview



Cryptography and Security

• Art and science of protecting our information.

• Keeping it private, if we want privacy

• Protecting its integrity, if we want to avoid 
forgeries.

Images from Wikipedia and Barnes and Noble



Some thoughts about cryptography
 Cryptography only one small piece of a larger system
 Must protect entire system

• Physical security

• Operating system security
• Network security

• Users

• Cryptography (following slides)

 “Security only as strong as the weakest link”
• Need to secure weak links
• But not always clear what the weakest link is (different adversaries 

and resources, different adversarial goals)

• Crypto failures may not be (immediately) detected

 Cryptography helps after you’ve identified your threat model 
and goals



Common Communication 
Security Goals
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Alice
Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Symmetric Setting
Both communicating parties have access to a shared 

random string K, called the key.



Adversary

pkB

pkA
Alice

Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Asymmetric Setting
Each party creates a public key pk and a secret key sk.  
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Encryption schemes:  A tool for protecting privacy.

K K

Adversary

. . . . . . . . . .Message M

. . . . . . .Ciphertext C

Achieving Privacy (Symmetric)



Achieving Privacy (Asymmetric)

Alice
Bob

M C
Encrypt

pkB

Decrypt

skB

M

Encryption schemes:  A tool for protecting privacy.

Adversary

. . . . . . . . . .Message M

. . . . . . .Ciphertext C

pkA,skA pkB,skB

pkB

pkA



Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes:  A tool for protecting 
integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

. . . . . . . . . .Message M
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Achieving Integrity (Asymmetric)

M
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Bob
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(M,T)

Verify

Digital signature schemes:  A tool for protecting 
integrity and authenticity.
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Alice

PBKDF

Getting keys:  PBKDF
Password-based Key Derivation Functions

Password K

(Key check value)



Getting keys:  Key exchange
Key exchange protocols:  A tool for establishing a share 

symmetric key
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Adversary

pkB, sign(skCA,B,pkB)

Alice
Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Getting keys:  CAs
Each party creates a public key pk and a secret key sk.  

(Public keys signed by a trusted third party:  a certificate 
authority.)

pkA, sign(skCA, A, pkA)



Alice

PRNG

“Random” Numbers
Pseudorandom Number Generators (PRNGs)

R1, R2, R3, R4, R5, ...

Machine State

User Input

... Adversary





Source:  XKCD



Kerckhoff’s Principle

 Security of a cryptographic object should depend 
only on the secrecy of the secret (private) key

 Security should not depend on the secrecy of the 
algorithm itself.

 Why?



One-way Communications

Message encrypted under Bob’s public key

PGP is a good example



Interactive Communications

Let’s talk securely; here are the algorithms I 
understand

I choose these algorithms; start key exchange

Continue key exchange

In many cases, it’s probably a good idea to just use a 
standard protocol/system like SSH, SSL/TLS, etc...

Communicate using exchanged key



Let’s Dive a Bit Deeper 



One-way Communications

6. Send D, C, T

(Informal example; ignoring, e.g., signatures)
1. Alice gets Bob’s public key; Alice verifies Bob’s public key (e.g., via CA)

2. Alice generates random symmetric keys K1 and K2

3. Alice encrypts the message M the key K1; call result C 

4. Alice authenticates (MACs) C with key K2; call the result T

5. Alice encrypts K1 and K2 with Bob’s public key; call the result D

(Assume Bob’s private key is encrypted on Bob’s disk.)

7. Bob takes his password to derive key K3

8. Bob decrypts his private key with key K3

9. Bob uses private key to decrypt K1 and K2

10. Bob uses K2 to verify MAC tag T

11. Bob uses K1 to decrypt C



Interactive Communications
1. Alice and Bob exchange public keys and certificates

3. Alice and Bob take their passwords and derive symmetric keys
4. Alice and Bob use those symmetric keys to decrypt 
and recover their asymmetric private keys.

5. Alice and Bob use their asymmetric private keys and a key 
exchange algorithm to derive a shared symmetric key

(They key exchange process will require Alice and Bob to 
generate new pseudorandom numbers)

6.  Alice and Bob use shared symmetric key to encrypt 
and authenticate messages

2. Alice and Bob use CA’s public keys to verify certificates and each other’s 
public keys

(Informal example; details omitted)

(Last step will probably also use random numbers; will need to 
rekey regularly; may need to avoid replay attacks,...)



Next

 Brief History



What cryptosystems 
have you heard of?
(Past or present)



History

 Substitution Ciphers 
• Caesar Cipher

 Transposition Ciphers
 Codebooks
 Machines

 Recommended Reading:  The Codebreakers by 
David Kahn and The Code Book by Simon Singh. 
• Military uses
• Rumrunners
• ....



Classic Encryption

• Goal:  To communicate a secret message

• Start with an algorithm

• Caesar cipher (substitution cipher):

	 	 ABCDEFGHIJKLMNOPQRSTUVWXYZ

  GHIJKLMNOPQRSTUVWXYZABCDEF



Then add a secret key

• Both parties know that the secret word is 
“victory”:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 VICTORYABDEFGHJKLMNPQSUWXZ

• “state of  the art” for thousands of years



Cryptographers vs Cryptanalysts

• A battle that continues today

• Cryptographers try to devise more clever 
algorithms and keys

• Cryptanalysts search for vulnerabilities

• Early cryptanalysts were linguists:

• frequency analysis

• properties of letters



Cryptanalysis and probabilities

From http://en.wikipedia.org/wiki/Letter_frequencies



• Visual Cryptography

• Take a  black and white bitmap image

• Encode 0 as:

• Encode 1 as:

• 1 xor 0 = 0 xor 1 = 1:

• 1 xor 1 = 0 xor 0 = 0:

• Nice toolkit online here:  http://www.cl.cam.ac.uk/
~fms27/vck/

Diversity in Modern Crypto

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html 



Key Entry Pad (4-digit PIN)

• This is the key pad on my 
office safe.

• Inside my safe is a copy of final 
exam.

• How long would it take a you 
to break in?

Image from profmason.com

✦ Answer (combinatorics):
✦ 104 tries maximum.
✦ 104 / 2 tries on average.

✦ Answer (unit conversion):
✦ 3 seconds per try --> 4 

hours and 10 minutes on 
average



Key Entry Pad (4-digit PIN)
• Now assume the safe 

automatically calls police after 
3 failed attempts.

• What is the probability that 
you will guess the PIN within 3 
tries?

• (Assume no repeat tries.)

Image from profmason.com

✦ Answer (combinatorics):
✦ 10000 choose 3 possible 

choices for the 3 guesses
✦ 1 × (9999 choose 2) 

possible choices contain the 
correct PIN

✦ So success probability is 3 / 
10000



Key Entry Pad (4-digit PIN)

• Could you do better at 
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on 

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps



Key Entry Pad (4-digit PIN)

• Couldyou do better at 
guessing the PIN?
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✦ Answer (chemical combinatorics):
✦ Put different chemical on 

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns 
after I access safe



Key Entry Pad (4-digit PIN)

• Could you do better at 
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on 
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✦ Observe residual patterns 
after I access safe



Key Entry Pad (4-digit PIN)

• Could you do better at 
guessing the PIN?

Image from profmason.com

✦ Answer (chemical combinatorics):
✦ Put different chemical on 

each key (NaCl, KCl, LiCl, ...)

Idea from http://eprint.iacr.org/2003/217.ps

✦ Observe residual patterns 
after I access safe

Lesson:  Consider the complete 
system, physical security, etc

Lesson:  Think outside the box



Thermal Patterns

Images from http://lcamtuf.coredump.cx/tsafe/



General approach for crypto today
 Layered approach:

• Cryptographic primitives, like block ciphers, stream ciphers, 
hash functions, and one-way trapdoor permutations

• Cryptographic protocols, like CBC mode encryption, CTR mode 
encryption, HMAC message authentication

 Public algorithms (Kerckhoff’s Principle)
 Security proofs based on assumptions (not this course)

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.


