
Tadayoshi Kohno

CSE P 590 / CSE M 590 (Spring 2010)

Computer Security and Privacy

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

High-level information
 Instructor: Tadayoshi Kohno (Yoshi)

• Office: CSE 558

• Office hours: Thursdays, 5:30 to 6:20pm (right before class)
• Open door policy – don’t hesitate to stop by!

 TAs: Tamara Denning and Karl Koscher
• Office/hours: Thursdays, 5:30 to 6:20pm (also right before class)

 Course website
• Assignments, reading materials, ...

 Course email list
• Announcements

 Course forum
• Discussion

Prerequisites

Working knowledge of C and assembly
• One of the projects involves writing buffer overflow

attacks in C
• You must have detailed understanding of x86

architecture, stack layout, calling conventions, etc.

Working knowledge of software engineering tools
for Unix environments (gdb, etc)

Working knowledge of Java and JavaScript

Prerequisites

 Strongly recommended: Computer Networks;
Operating Systems
• Will help provide deeper understanding of security

mechanisms and where they fit in the big picture

Recommended: Complexity Theory; Discrete
Math; Algorithms
• Will help with the more theoretical aspects of this

course.

Course Logistics (CSE P 590)
 Lectures: Thursdays: 6:30 to 9:20pm
 Security is a contact sport!
 Labs (30% of the grade)
 Homeworks (30% of grade)
 Research (20% of grade)
 Final (20% of the grade)

No make-up or substitute exam!
If you are not sure you will be able to

take the exam on the assigned date and
time, do not take this course!

Exceptional work may be rewarded
with extra credit

Course Logistics (CSE M 590)
 Same as before, but...
 Labs (30% of the grade)
 Homeworks (25% of grade)
 Research (25% of grade)
 Final (20% of the grade)

Late Submission Policy

 Late assignments will (generally) be dropped
20% per day.
• Late days will be rounded up
• So an assignment turned in 26 hours late will be

downgraded 40%.
• See website / assignment announcements for

exceptions

 Everything is generally due on Friday (Research
summarizes generally due on Thursdays)

Course Materials
 Textbooks:

• Daswani, Kern, Kesavan, “Foundations of Security”
• Ferguson, Schneier, Kohno, “Cryptography Engineering”
• Additional materials linked to from course website

Attend lectures.
• Lectures will not follow the textbooks
• Lectures will focus on “big-picture” principles and ideas
• Lectures will cover some material that is not in the

textbook

Other Helpful Books (all online)

Ross Anderson, “Security Engineering” (1st edition)
• Focuses on design principles for secure systems
• Wide range of entertaining examples: banking, nuclear

command and control, burglar alarms
• You should all at least look at the Table of Contents for

this book.

Kaashoek and Saltzer, “Principles of Computer
System Design”

Menezes, van Oorschot, and Vanstone, “Handbook
of Applied Cryptography”

Others books, movies, ...

 Pleasure books include:
• Little Brother by Cory Doctorow

– Available online here http://craphound.com/littlebrother/download/
– Highly recommended reading

• Cryptonomicon by Neal Stephenson

 Movies include:
• Hackers

• Sneakers
• Diehard 4

• Wargames

 Historical texts include:
• The Codebreakers by David Kahn

• The Code Book by Simon Singh

Ethics

 In this class you will learn about how to attack
the security and privacy of (computer) systems.

Knowing how to attack systems is a critical step
toward knowing how to protect systems.

But one must use this knowledge in an ethical
manner.

Mailing List

Make sure to sign up for the mailing list
URL for mailing list on course website:

• http://www.cs.washington.edu/education/courses/
csep590c/10sp/administrivia/email.html

Used for announcements

Forum

We’ve set up a forum for this course
• https://catalysttools.washington.edu/gopost/board/

kohno/16358/

 Please us it to discuss the homeworks and labs
and other general class materials

Homeworks

 Tentative schedule below (future dates subject
to change based on progress, etc)

General plan (tentative):
• 4 homeworks, approximately once every two weeks

– April 16, April 30, May 14, May 28
– First one posted online over the weekend

• Generally due Fridays at 6:30pm.
• Submit to Catalyst system (URL on course page)

 http://www.cs.washington.edu/education/
courses/csep590c/10sp/homework/index.html

Labs

 Tentative schedule below (future dates subject
to change based on progress, etc)

General plan (tentative):
• 2 labs

– May 7, May 28
– First one posted online by next Monday

• Generally due Fridays at 6:30pm.
• Submit to Catalyst system (URL on course page)

 http://www.cs.washington.edu/education/
courses/csep590c/10sp/projects/index.html

Labs (tentative plan)

 First lab: Software security
• Buffer overflow attacks, ...

 Second lab: Web security
• XSS attacks, ...

Research

Read approximately 1 research paper every
week (at most 2 papers per week)

 Submit review of paper online
Come prepared to discuss research in class

 http://www.cs.washington.edu/education/
courses/csep590c/10sp/homework/index.html

Research

Contents of review:
• What problem does the paper address?
• Important new ideas in the paper, and why
• Approach used to solve the problem
• How the paper supports or justifies its arguments
• Ways paper could be improved
• Open research questions

 See course web page for more info

What does “security” mean to you?

Two key themes of this course

 How to think about security
• The Security Mindset - “new” way to think about systems
• Threat models, security goals, assets, risks, adversaries
• Connection between security, technology, politics,

ethics, ...
• Woven throughout the course. See also:

– http://cubist.cs.washington.edu/Security/ (last year)
– https://catalysttools.washington.edu/gopost/board/kohno/14597/

(last quarter)
– http://slashdot.org/

 Technical aspects of security
• Attack techniques
• Defenses

How to think about security

 Several approaches for developing “The Security
Mindset” and for exploring the broader
contextual issues surrounding computer security
• Security reviews / current events (see Section 1.12 of

Ferguson et al)
• In class discussions
• Participation in forums

Technical Themes

Vulnerabilities of computer systems
• Software problems (buffer overflows); crypto problems;

network problems (DoS, worms); people problems
(usability, phishing)

Defensive technologies
• Protection of information in transit: cryptography,

security protocols
• Protection of networked applications: firewalls and

intrusion detection
• “Defense in depth”

What This Course is Not About
Not a comprehensive course on computer security

• Computer security is a broad discipline!
• Impossible to cover everything in one quarter
• So be careful -- this course is not a “silver bullet”

Not about all of the latest and greatest attacks
• Read bugtraq or other online sources instead

Not a course on ethical, legal or economic issues
• We will touch on ethical issues, but the topic is huge

Not a course on how to “hack” or “crack” systems
• Yes, we will learn about attacks ... but the ultimate goal

is to develop an understanding of attacks so that you can
build more secure systems

Two key themes of this course

 How to think about security
• The Security Mindset - “new” way to think about systems
• Threat models, security goals, assets, risks, adversaries
• Connection between security, technology, politics,

ethics, ...
• Woven throughout the course. See also:

– http://cubist.cs.washington.edu/Security/ (last year)
– https://catalysttools.washington.edu/gopost/board/kohno/14597/

(last quarter)
– http://slashdot.org/

 Technical aspects of security
• Attack techniques
• Defenses

What is Computer Security?

 Systems may fail for many reasons
Reliability deals with accidental failures
Usability deals with problems arising from

operating mistakes made by users
 Security deals with intentional failures created

by intelligent parties
• Security is about computing in the presence of an

adversary
• But security, reliability, and usability are all related

What Drives the Attackers?

Adversarial motivations:
• Money, fame, malice, curiosity, politics, terror....

 Fake websites, identity theft, steal money and
more

Control victim’s machine, send spam, capture
passwords

 Industrial espionage and international politics
Access copy-protected movies and videos
Attack on website, extort money
Wreak havoc, achieve fame and glory

Challenges: What is “Security?”
What does security mean?

• Often the hardest part of building a secure system is
figuring out what security means

• What are the assets to protect?
• What are the threats to those assets?
• Who are the adversaries, and what are their

resources?
• What is the security policy?

 Perfect security does not exist!
• Security is not a binary property
• Security is about risk management

Current events andsecurity
reviews designed to exercise our

thinking about these issues

From Policy to Implementation
After you’ve figured out what security means to

your application, there are still challenges
• How is the security policy enforced?
• Design bugs

– Poor use of cryptography
– Poor sources of randomness
– ...

• Implementation bugs
– Buffer overflow attacks
– ...

• Is the system usable?
Don’t forget the users! They are a

critical component!

Many Participants

Many parties involved
• System developers
• Companies deploying the system
• The end users
• The adversaries (possibly one of the above)

Different parties have different goals
• System developers and companies may wish to

optimize cost (generalization)
• End users may desire security, privacy, and usability
• But the relationship between these goals is quite

complex (will customers choose not to buy the
product if it is not secure?)

Other (Mutually-Related) Issues

Do consumers actually care about security?
 Security is expensive to implement
 Plenty of legacy software
 Easier to write “insecure” code
 Some languages (like C) are unsafe

Approaches to Security

 Prevention
• Stop an attack

Detection
• Detect an ongoing or past attack

Response
• Respond to attacks

 The threat of a response may be enough to
deter some attackers

Example: Electronic Voting
 Popular replacement to traditional paper ballots

si.edu

si.edu

Pre-Election

Ballot definition file

Pre-election: Poll workers load “ballot
definition files” on voting machine.

Poll worker

Active Voting

Voter token

Voter token

Interactively vote

Ballot definition file

Active voting: Voters obtain single-use tokens
from poll workers. Voters use tokens to active
machines and vote.

VoterPoll worker

Active Voting

Encrypted votes

Voter token

Voter token

Interactively vote

Ballot definition file

Active voting: Votes
encrypted and stored. Voter
token canceled.

VoterPoll worker

Post-Election

si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Post-election: Stored votes
transported to tabulation
center.

Encrypted votes

Recorded votes

VoterPoll worker

Security and E-Voting (Simplified)
 Functionality goals:

• Easy to use
• People should be able to cast votes easily, in their

own language or with headphones for accessibility

 Security goals:
• Adversary should not be able to tamper with the

election outcome
– By changing votes
– By denying voters the right to vote

• Is it OK if an adversary can do the above, assuming
you can catch him or her or them?

• Adversary should not be able to figure out how
voters vote

Can You Spot Any Potential Issues?

si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Post-election: Stored votes
transported to tabulation
center.

Encrypted votes

Recorded votes

VoterPoll worker

Potential Adversaries

Voters
 Election officials
 Employees of voting machine manufacturer

• Software/hardware engineers
• Maintenance people

Other engineers
• Makers of hardware
• Makers of underlying software or add-on components
• Makers of compiler

 ...
Or any combination of the above

Problem: An adversary (e.g., a poll worker, software developer,
or company representative) able to control the software or the
underlying hardware could do whatever he or she wanted.

What Software is Running?

Bad file

Tabulator

Voter token

Interactively vote

Ballot definition file

Encrypted votes

Problem: Ballot definition files are not authenticated.

Example attack: A malicious poll worker could modify ballot
definition files so that votes cast for “Mickey Mouse” are
recorded for “Donald Duck.”

Recorded votes

VoterPoll worker

Voter token

Interactively vote

Ballot definition file

Problem: Smartcards can perform cryptographic operations.
But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own
voter token and vote multiple times.

Tabulator

Encrypted votes

Recorded votes

VoterPoll worker

Ballot definition file

Tabulator

Encrypted votes

Problem: Encryption key (“F2654hD4”) hard-coded into the
software since (at least) 1998. Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.

Recorded votes

Voter

Voter token

Interactively vote

VoterPoll worker

Ballot definition file

Tabulator

Encrypted votes

Problem: When votes transmitted to tabulator over the
Internet or a dialup connection, they are decrypted first; the
cleartext results are sent the the tabulator.

Example attack: A sophisticated outsider could determine how
votes vote.

Voter token

Interactively vote

Recorded votes

VoterPoll worker

Why do these security
issues exist?

What could we do to
ward off such issues with

future technologies?

RFID EEG Gaming large displaysmobile sensing
platforms

wearables health displayssmart phonesambient displays

Security not just for PCs

Implantable Medical Devices

Pacemakers and
defibrillators

Glucose
monitors

Neurostimulators

Drug pumps

Examples of Past Security Reviews

 http://cubist.cs.washington.edu/Security/
category/security-reviews/ (Blog through 2009)

 https://catalysttools.washington.edu/gopost/
board/kohno/14597/ (Forum for Winter 2010)
• MyFord: https://catalysttools.washington.edu/gopost/

conversation/kohno/328838
• Caregiver’s Assistant: https://

catalysttools.washington.edu/gopost/conversation/
kohno/331994

• Home Automation: https://
catalysttools.washington.edu/gopost/conversation/
kohno/332004

Next

Basic security goals
 Thinking more about security

 network

Confidentiality (Privacy)

 Confidentiality is concealment of information

Eavesdropping,
packet sniffing,
illegal copying

 network

Integrity

 Integrity is prevention of unauthorized changes

Intercept messages,
tamper, release again

 network

Authenticity

 Authenticity is identification and assurance of origin of
information

 Variant of integrity
Unauthorized assumption of
another’s identity

 network

Availability

 Availability is ability to use information or resources
desired

Overwhelm or crash servers,
disrupt infrastructure

Whole-System is Critical

 Securing a system involves a whole-system view
• Cryptography
• Implementation
• People
• Physical security
• Everything in between

 This is because “security is only as strong as the
weakest link,” and security can fail in many places
• No reason to attack the strongest part of a system if you

can walk right around it.
• (Still important to strengthen more than the weakest link)

Analyzing the Security of a System

 First thing: Summarize the system as clearly and
concisely as possible
• Critical step. If you can’t summarize the system clearly

and concisely, how can you analyze it’s security?

 Next steps:
• Identify the assets: What do you wish to protect?
• Identify the adversaries and threats
• Identify vulnerabilities: Weaknesses in the system
• Calculate the risks

Assets
 Need to know what you are protecting!

• Hardware: Laptops, servers, routers, PDAs, phones, ...
• Software: Applications, operating systems, database

systems, source code, object code, ...
• Data and information: Data for running and planning your

business, design documents, data about your customers,
data about your identity

• Reputation, brand name
• Responsiveness

 Assets should have an associated value (e.g., cost
to replace hardware, cost to reputation, how
important to business operation)

Adversaries
 National governments
 Terrorists
 Thieves
 Business competitors
 Your supplier
 Your consumer
 The New York Times
 Your family members (parents, children)
 Your friends
 Your ex-friends
 ...

Threats

 Threats are actions by adversaries who try to
exploit vulnerabilities to damage assets
• Spoofing identities: Attacker pretends to be someone else
• Tampering with data: Change outcome of election
• Crash machines: Attacker makes voting machines

unavailable on election day
• Elevation of privilege: Regular voter becomes admin

 Specific threats depend on environmental
conditions, enforcement mechanisms, etc
• You must have a clear, simple, accurate understanding of

how the system works!

Threats
 Several ways to classify threats

• By damage done to the assets
– Confidentiality, Integrity, Availability

• By the source of attacks
– (Type of) insider
– (Type of) outsider
– Local attacker
– Remote attacker
– Attacker resources

• By the actions
– Interception
– Interruption
– Modification
– Fabrication

Vulnerabilities
Weaknesses of a system that could be exploited to

cause damage
• Accounts with system privileges where the default

password has not been changed (Diebold: 1111)
• Programs with unnecessary privileges
• Programs with known flaws
• Known problems with cryptography
• Weak firewall configurations that allow access to

vulnerable services
• ...

 Sources for vulnerability updates: CERT, SANS,
Bugtraq, the news(?)

Risks Analyses: Lots of Options

 Quantitative risk analysis
• Example: Risk = Asset × Threat × Vulnerability
• Monetary value to assets
• Threats and vulnerabilities are probabilities
• (Yes: Difficult to assign these costs and probabilities)

 Qualitative risk analysis
• Assets: Critical, very important, important, not important
• Vulnerabilities: Likely to exit, moderately likely to exist,

unlikely to exist
• Threats: Very likely, likely, unlikely, very unlikely

Probability
Risk ImpactRisk Exposure

Helpful Tables

Asset Confidentiality Integrity Availability

Hardware

Software

Data

People

...

Helpful Tables

Voter Election official ...

Privacy of vote

Integrity of
vote

Availability of
voting system

Confidence in
election

...

Helpful Tables

Create New
Voter Cards

Decrypt voting
record

...

Privacy of vote

Integrity of
vote

Availability of
voting system

Confidence in
election

...

Attack Trees

Security is Subtle

 Security attacks can be subtle
 Can’t provably and accurately identify / quantify all

risks, vulnerabilities, threats.
 So need to think careful!

• And keep the whole system in mind

 Phishing one example
• If attacker can trick user into entering private information,

then no protection mechanism will help
• (So research tries to focus on helping users not be tricked)

On Modularity and Complexity

 Modular design may increase vulnerability
• Abstraction is difficult to achieve in security: what if the

adversary operates below your level of abstraction?

 Modular design may increase security: small TCB
 Complexity may increase vulnerability

One perspective (bad news)

 Security often not a primary consideration
• Performance and usability take precedence

 Feature-rich systems may be poorly understood
• Higher-level protocols make mistaken assumptions

 Implementations are buggy
• Buffer overflows, XSS vulnerabilities, ...

 Networks are more open and accessible than ever
• Increased exposure, easier to cover tracks

 No matter what technical mechanisms you have, people may
circumvent them
• Phishing, impersonation, write down passwords, ...

 Attackers may be very powerful
• ISPs, governments, ...

–

Better News

 There are a lot of defense mechanisms
• We’ll study some, but by no means all, in this course

 It’s important to understand their limitations
• “If you think cryptography will solve your problem, then

you don’t understand cryptography… and you don’t
understand your problem” -- Bruce Schneier

• Security is not a binary property
• Many security holes are based on misunderstanding

 Security awareness and user “buy-in” help

Syllabus (Approximate)

 Thinking about security; the “big picture”
• The hardest part: Getting the “security mindset”

 Software security (including buffer overflow attacks)
Web security (including XSS attacks)
 Cryptography
 Network security
 Botnets and malware
 The users (including usability)
 Anonymity

Field broad. All parts
interconnected, so we will “bounce”

around in a methodical way

Security reviews and current events
 Help you develop the “security mindset”
 Best way to learn a foreign language: move to that

country and immerse yourself in the language.
 Same thing applies to “security thinking”
 Some homeworks: opportunity to think about

security on a regular basis -- outside of “class”
• When reading current events
• When hearing about new product announcements
• While doing regular, day-to-day activities?

– When you pass a bank, do you start thinking about how you might
break in?

Current Events

 Important for computer security practitioners (and all
computer scientists) to be able to
• Reflect on the broader context of technology

• Guide future development of technology

• Guide future policy

 For the assignment
• Summarize current event

• Discuss why event arose

• Reflect on what could have been done prior to the event arising (to
prevent, deter, or change consequences)

• Describe broader issues surrounding current event (ethical, societal)
• How should people respond to the event (policy makers, the public,

companies, etc.)

 Why write down? To go through all the steps at least once

Security Reviews

 Summary of system
 Assets
 Adversaries and threats
 Potential weaknesses (OK to speculate, but make it

clear that you are speculating)
 Potential defenses.
 Risks
 Conclusions.

Let’s try thinking about security

 Integrated networks on 787s (let’s assume that they
are indeed integrated).

Wireless Picture Frames: http://seattlewireless.net/
~casey/?p=13.

 Smart phones
 Recall steps:

• First thing: Summarize the system as clearly and
concisely as possible

• Identify the assets: What do you wish to protect?
• Identify the adversaries and threats
• Identify vulnerabilities: Weaknesses in the system
• Calculate the risks (we’ll do informally)

Next

 Software security
• Software lifecycle
• Buffer overflow attacks
• Other software security issues

Software Lifecycle (Simplified)

 Requirements
 Design
 Implementation
 Testing
 Use

Software problems are ubiquitous

Software problems are ubiquitous

http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

 NASA Mars Lander
• Bug in translation between English and metric units
• Cost taxpayers $165 million

 Denver Airport baggage system
• Bug caused baggage carts to become out of “sync,”

overloaded, etc.
• Delayed opening for 11 months, at $1 million per day

 Other fatal or potentially fatal bugs
• US Vicennes tracking software
• MV-22 Osprey
• Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html

Adversarial Failures

 Software bugs are bad
• Consequences can be serious

 Even worse when an intelligent adversary wishes to
exploit them!
• Intelligent adversaries: Force bugs into “worst possible”

conditions/states
• Intelligent adversaries: Pick their targets

 Buffer overflows bugs: Big class of bugs
• Normal conditions: Can sometimes cause systems to fail
• Adversarial conditions: Attacker able to violate security of

your system (control, obtain private information, ...)

A Bit of History: Morris Worm

 Worm was released in 1988 by Robert Morris
• Graduate student at Cornell, son of NSA chief scientist
• Convicted under Computer Fraud and Abuse Act, sentenced

to 3 years of probation and 400 hours of community service
• Now an EECS professor at MIT

 Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

 Due to a coding error, it created new copies as fast as
it could and overloaded infected machines

 $10-100M worth of damage

Morris Worm and Buffer Overflow

 One of the worm’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems
• By sending special string to finger daemon, worm caused

it to execute code creating a new worm copy
• Unable to determine remote OS version, worm also

attacked fingerd on Suns running BSD, causing them to
crash (instead of spawning a new copy)

Buffer Overflow These Days

 Very common cause of Internet attacks
• In 1998, over 50% of advisories published by CERT

(computer security incident report team) were caused by
buffer overflows

 Morris worm (1988): overflow in fingerd
• 6,000 machines infected

 CodeRed (2001): overflow in MS-IIS server
• 300,000 machines infected in 14 hours

 SQL Slammer (2003): overflow in MS-SQL server
• 75,000 machines infected in 10 minutes (!!)

 Buffer is a data storage area inside computer memory
(stack or heap)
• Intended to hold pre-defined amount of data

– If more data is stuffed into it, it spills into adjacent memory

• If executable code is supplied as “data”, victim’s machine
may be fooled into executing it – we’ll see how

– Code will self-propagate or give attacker control over machine

 First generation exploits: stack smashing
 Later generations: heaps, function pointers, off-by-

one, format strings and heap management structures

Attacks on Memory Buffers

Stack Buffers

 Suppose Web server contains this function
 void func(char *str) {

 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

 No bounds checking on strcpy()
 If str is longer than 126 bytes

• Program may crash
• Attacker may change program behavior

buf uh oh!

buf authenticated11 (yeah!)

Changing Flags

 Suppose Web server contains this function
 void func(char *str) {

 int authenticated = 0;
 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

 Authenticated variable non-zero when user has extra
privileges

 Morris worm also overflowed a buffer to overwrite an
authenticated flag in in.fingerd

Memory Layout

 Text region: Executable code of the program
 Heap: Dynamically allocated data
 Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

 Suppose Web server contains this function
 void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

 When this function is invoked, a new frame with local
variables is pushed onto the stack

Stack Buffers

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

 Memory pointed to by str is copied onto stack…
 void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

 If a string longer than 126 bytes is copied into buffer,
it will overwrite adjacent stack locations

What If Buffer is Overstuffed?

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

 Suppose buffer contains attacker-created string
• For example, *str contains a string received from the

network as input to some network service daemon

 When function exits, code in the buffer will be
executed, giving attacker a shell
• Root shell if the victim program is setuid root

Executing Attack Code

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly
instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in

the location where the system
expects to find return address

Caller’s framestr

 Executable attack code is stored on stack, inside the
buffer containing attacker’s string
• Stack memory is supposed to contain only data, but…

 Overflow portion of the buffer must contain correct
address of attack code in the RET position
• The value in the RET position must point to the beginning

of attack assembly code in the buffer
– Otherwise application will (probably) crash with segmentation

violation

• Attacker must correctly guess in which stack position his
buffer will be when the function is called

Buffer Overflow Issues

Problem: No Range Checking

 strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into buf

starting from *str until “\0” is encountered, ignoring the
size of area allocated to buf

 Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …)

 strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

 Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw); …

 Published “fix”:

 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

 Published “fix” for Apache htpasswd overflow:

 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

 Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {

 char buffer[512]; int i;
 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 notSoSafeCopy(argv[1]);
 }

Off-By-One Overflow

 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame
• On little-endian architecture, make it point into buffer
• RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!

Memory Layout

 Text region: Executable code of the program
 Heap: Dynamically allocated data
 Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

 Overflowing buffers on heap can change pointers that
point to important data
• Sometimes can also transfer execution to attack code
• Can cause program to crash by forcing it to read from an

invalid address (segmentation violation)

 Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use it
to write into a normally inaccessible file
• For example, replace a filename pointer with a pointer into

buffer location containing name of a system file
– Instead of temporary file, write into AUTOEXEC.BAT

Heap Overflow

 C uses function pointers for callbacks: if pointer to F
is stored in memory location P, then another function
G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)

 Proper use of printf format string:
 … int foo=1234;

 printf(“foo = %d in decimal, %X in hex”,foo,foo); …
– This will print
 foo = 1234 in decimal, 4D2 in hex

 Sloppy use of printf format string:
 … char buf[14]=“Hello, world!”;

 printf(buf);
 // should have used printf(“%s”, buf); …

– If buffer contains format symbols starting with %, location pointed
to by printf’s internal stack pointer will be interpreted as an
argument of printf. This can be exploited to move printf’s internal
stack pointer.

Format Strings in C

 %x format symbol tells printf to output data on stack
 … printf(“Here is an int: %x”,i); …

 What if printf does not have an argument?
 … char buf[16]=“Here is an int: %x”;

 printf(buf); …
– Stack location pointed to by printf’s internal stack pointer will be

interpreted as an int. (What if crypto key, password, ...?)

 Or what about:
 … char buf[16]=“Here is a string: %s”;

 printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

Viewing Memory

 %n format symbol tells printf to write the number of
characters that have been printed

 … printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

 What if printf does not have an argument?
 … char buf[16]=“Overflow this!%n”;

 printf(buf); …
– Stack location pointed to by printf’s internal stack pointer will be

interpreted as address into which the number of characters will be
written.

Writing Stack with Format Strings

More Buffer Overflow Targets

 Heap management structures used by malloc()
 URL validation and canonicalization

• If Web server stores URL in a buffer with overflow, then
attacker can gain control by supplying malformed URL

– Nimda worm propagated itself by utilizing buffer overflow in
Microsoft’s Internet Information Server

 Aside: Some attacks don’t even need overflow
• Naïve security checks may miss URLs that give attacker

access to forbidden files
– For example, http://victim.com/user/../../autoexec.bat may pass

naïve check, but give access to system file
– Defeat checking for “/” in URL by using hex representation:

%5c or %255c.

