Plan for Today

- Fair division basics
- Intro to auctions

2people who want to split a heterogeneous divisible good.
Played 1 is told to divide the call into 2 pieces she values equally Plages 2 picks then faverte.
Model: good is $[0,1]$
$V_{i}(S)$ is the value that playgeni has for piece flake S.
$-v_{i}[0,0]=1$

- value is adder ondisjont intervals
- values are divisible

If $c \in[0,1]$ and X, there is a

$$
y_{\text {in } x} \text { st. } \quad v_{i}(y)=c v_{i}(x)
$$

Are the playeys inentivized do follow oneas of Int, Uchoose proticer?

An allocation $\quad A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ A_{i} piece tratplageni gets is Paneto ophrial y 3 no alternatur allocom $B=\left(B_{1}, B_{n}\right)$ s.t. everyent is at lastas happy $\&$ some agent is strictly roppien.
Int yarhese not Puecto ophinad

- gietre whole cale $\rightarrow 1$ is PO.

How to eyine fairmess?
(1) both plagess are equaly tappy

I cut y chise doen't satisfy this?
(2) allocitios is propertional of $V_{i}\left(A_{i}\right) \geqslant \frac{1}{n} \quad \forall i$
(3) enryfree if $\quad \forall i j v_{i}\left(A_{i}\right) \geqslant v_{i}\left(A_{j}\right)$
$E F \Rightarrow$ proprional.

$$
1=\sum_{j=1}^{n} v_{i}\left(A_{j}\right) \leqslant n v_{i}\left(A_{i}\right) \Rightarrow v_{i}\left(A_{i}\right) \quad \forall j\left(A_{i}\right) \geqslant \frac{1}{n}
$$

 prearhonal but not EF

Proportional Allocah
Moving-knife Algorithm for fair division of a cake among n people

- Move a knife continuously over the cake from left to right until some player yells "Stop!"
- Give that player the piece of cake to the left of the knife.
- Iterate with the other $n-1$ players and the remaining cake.

Claim: Procedure is paporthane
Prof: wherein there are k plages left, remaing call is worth atleest $\frac{k}{n}$ to each of them.
Base case: $k=n$
Inductive stop: k left \& If bold s

Coupleanty:
reamat access to value fino V : throgh a mypes of quasies

(1) Eval: $([x, y])$
retums $V_{i}[x, y]$
(2) Cuti (x, c) remns y s.t. $\left.\quad V_{i}([x, y])\right)=c$ n^{2} quanies for Moving knife. \exists ouph D\& Conguen $C(n \log n)$ queries $\Omega(n \operatorname{logn})$ queries ore recesbay.

Figure 11.3. This figure shows an example of how the Moving-knife Algorithm might evolve with three players. The knife moves from left to right. Player I takes the first piece, then II, then III. In the end, player I is envious of player III.

CAKE CUTTING FOR THREE

Alice, Bob and Charlie want to share a cake so that none of them envies other pieces.(2)

Charlie cuts the cake into three pieces that are equally valuable from his perspective.

If they identify the same choice, things get tricky.

CAKE CUTTING FOR THREE

1 Alice, Bob and Charlie want to share a cake so that none of them envies other pieces.

Alice and Bob identify their first choices.
If they identify the same choice, things get tricky.
(4) Bob trims his preferred piece to match his second most preferred piece.Putting the trim to one side they choose in this order: Alice first*, Bob second and Charlie last. It is envy free
...for Alice, because she got first choice.

...for Bob, because his second choice was equally valuable.
...for Charlie, because the three original slices were equal to him.
-If Alice doesn't choose the trimmed piece, then Bob must take it.
Alice and Bob then trade places for the rest of the process.
6 To dinny up the trimmed slice, first Bob cuts the trim into three pieces that are equally valuable from his perspective.

B

CAKE CUTTING FOR THREE

Alice, Bob and Charlie want to share a cakeso that none of them envies other pieces.
Charlie cuts the cake into three pieces that
are equally voluable from his perspective.Alice and Bob identify their first choices.
If they identify the same choice, things get tricky.Bob trims his preferred piece to match
his second most preferred piece.
Putting the trim to one side they choose in this order: Alice first", Bob second and Charlie last.
It is envy free
...for Alice, because she got first choice.
...for Bob, because his second choice was equally valuable.
...for Charlie, because the three original slices were equal to him.
-IF Alice doesn't choose the trimmed piece, then Bob must toke it.
Alice and Bob then trade places for the rest of the process.
(6) To divy up the trimmed slice, first Bob cuts the trim into three pieces that are equally valuable from his perspective.

(7) Now they choose a portion of trim in this order: Alice first, Charlie second and Bob last

It is envy free

...for Alice, because she got her first choice.
...for Charlie, because he got to choose before Bob.
...for Bob, because the three pieces of trim were equal to him.

CAKE CUTTING FOR THREE
(1) Alice, Bob and Charlie want to share a cake so that none of them envies other pieces.
2) Charlie cuts the cake into three pieces that
are equally valuable from his perspective. are equally valuable from his perspective.
(3) Alice and Bob identify their first choices. If they identify the same choice, things get tricky.
4) Bob trims his preferred piece to match his second most preferred piece.
(5) Putting the trim to one side they choose in this order: Alice first*, Bob second and Charlie last. It is envy free ...for Alice, because she got first choice. ...for Bob, because his second choice was equally valuable. ...for Charlie, because the three original slices were equal to him.
-If Alice doesn't choose the trimmed piece, then Bob must take it. Alice and Bob then trade places for the rest of the process.
(6)

To divy up the trimmed slice, first Bob cuts the trim into three pieces that are equally valuable from his perspective.
(7) Now they choose a portion of trim in this order: Alice first, Charlie second and Bob last It is envy free
...for Alice, because she got her first choice.
...for Charlie, because he got to choose before Bob.
...for Bob, because the three pieces of trim were equal to him.

1960
$n=3$ $1995[B T]$
$2016[A M]$ $n=4 \quad 203 \mathrm{cuts}$
alln

$\Omega\left(n^{2}\right)$

Auctions
Single-item ancth
n bidens
Bidens
(pruat)
-each biden has a value v:

mey specity who wins \& haw mucheach peron pays
(1) Fist price anction
higheot bay theen bid pay then bid
(b) $2^{\text {te }}$ price amm pay $2^{\text {net }}$ nigheot bidem wions pay $2^{\text {nt }}$ higheot bid
(3) All-pay anem mytert bidere whe lvery parp what theybid

Thm In a $2^{\text {ne }}$ price anctre, its adonimant strategy to bid tantifully
PA Fix bids of evergas else B mox gtrese

$$
\begin{gathered}
\max \left(v_{i}-B, 0\right) \\
b_{i}:=v_{i}
\end{gathered}
$$

neven regat partiopaing y bid truafolly "individually rational"
The teme goes to the bidden whe values of most. "wefare moximizn".
no othen allocatro can hove niglen total utility to the bidbas +anctroveen.

$$
\underset{\substack{\text { sumblity } \\ \text { quiddus }}}{ } \sum_{i}\left(v i 1_{i \text { wins }}-p_{i}\right)+\sum_{i} p_{i}
$$

$$
\begin{aligned}
& \text { bidduns } \\
& \text { ramatien. }
\end{aligned}=\sum_{i} v: 1_{i \text { wins }}
$$

Kidertical stons, eack biden has a value v_{i} each biden only wants ore.
Design auccion trat is (tratuful, IR, welgare maximizng
Try 1: change evergere second highet bid X
Try 2: Change the ith highest biden the (iti)st

Fix: Chang the winners the $(k+1)^{\text {st }}$ highest bid.

It price a action:
for ever planes
β_{i} : mopping from values to bids for player i.
assure that each plage's value $v_{:} \sim F$ and those probability distils are public.

How shald y^{u} - bid when yen value is v

$$
\begin{aligned}
& p(v)=b \\
& u(b \mid v)=(v-b) \operatorname{Pr}(w / 1) \\
&=(v-b) \operatorname{Pr}\left(b>\frac{V_{2}}{2}\right) \\
&=(v-b) \operatorname{Pr}\left(v_{2}<2 b\right) \\
&=(v-b) \frac{2 b}{100}
\end{aligned}
$$

$\max (v-b)^{b}$

$$
b=\frac{Y}{2}
$$

Bange-Nosh Equilibnme BNE

$$
\begin{aligned}
& \left(\beta_{1}, \beta_{1}, \ldots, \beta_{0}\right) \text { is a BNE } \\
& { }^{\text {i }} V_{v i} E\left[u_{i}\left[\beta_{i}(v), \beta_{-i}\left(N_{-i}\right)\right]\right. \\
& \geqslant F\left[u_{i}\left(b^{\prime}, \beta-i(V-i)\right)\right] \quad \forall b^{\prime} \\
& V_{1}, V_{2} \sim V[0,100] \text {. } 1^{s t} p m e \\
& E[\text { archoveen reverrex }]=E\left[\operatorname{mox}\left(\frac{V_{1}}{2}, \frac{V_{2}}{\partial}\right)\right]
\end{aligned}
$$

and pru

$$
E[\text { anctonees semene }]=E\left[\min \left(v_{1}, v_{2}\right)\right]=\frac{100}{3}
$$

Thm (Revenve equivaler.c)
Set of bueers \& valkes all dhown i.id $\sim F$ Then any arction mechanism on which the opect goesto the bidder with the highest value (and the bidden wike tas min pabilyo) value toos ubat has the save erpected neverve.
exp payment of bidder wf vabe y
is same in any swh aucton $2^{\text {nd }}$ pprianearts. $U[0,1]$

10t prea awn
E[pagnt vark dosuly]
$\frac{v}{2}$

$$
=\beta \underset{v}{\beta(v)} \operatorname{Pr}(\omega \operatorname{wins})
$$

All pay anch:

$$
\begin{aligned}
& E[\text { paqn } v] \\
& =\beta_{a n}(v)=\frac{v^{2}}{2}
\end{aligned}
$$

$$
\int_{d}^{1} \frac{v^{2}}{2} d v
$$

$$
\begin{aligned}
& \frac{\text { playn win value }}{E}(\text { paynt })=\frac{r^{2}}{2} ? \text { ? } \\
& =E\left[V_{2} \mid V_{2} \leqslant v\right] \operatorname{Pr}\left(V_{v} \leqslant v\right)
\end{aligned}
$$

