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Price of Anarchy

* Explores games that arise “in the wild”, such as in Internet
settings.

* Tries to understand the impact of selfish behavior on society
by comparing the overall performance attained in equilibrium
when players behave selfishly to the performance that could be
attained if decisions were made by a centralized authority.



Selfish Routing [Roughgarden, Tardos]

e Model network as directed graph.

e We assume network users are selfish -- in equilibrium each
user will choose a route that minimizes their travel time, given
what everyone else is doing.

e What will the traffic be in equilibrium?
| umfa AafRc %cw\%&v\ Ao
1)) u\m\ 1L\ 5@\\’\‘ S0-50.

fob°'° oy |6

X 1
e Average latency= \.5
CONNNF O
Ty, O

Edge labels: latency as function of fraction of traffic



Braess’s Paradox

e Small changes can lead to counterintuitive behavior.
e Example: Government builds a new, very fast highway.

Edge labels: latency as function of fraction of traffic

Average Latency Ma [q.s.m Lb V)

in Nash Eq = 3/2



1 unit of traffic
ﬂows out

1 unit of traffic
flows in

J«o \
1
latency 7/, @ latency 1
1 e \ 1 \
1 unit of traffic latency 9 1 unit of traffic 1 unit of traffic 2
flows in 0 flows out flows in flows out
\ @ latency 1 Iatenc 4ncy 7

Nash equilibrium flow optimal flow

latency 1 @

1 unit of traffic

FI1GURE 8.2. The Braess Paradox: Each link in the top figure is labeled with
a latency function ¢(z) which describes the travel time on that edge as a
function of the fraction z of traffic using that edge. These figures show the
effect of adding a 0 latency road from C to D: The travel time on each of
v =A—C—Band yp = A— D — B is always at least the travel time on the
new route v = A — C — D — B. Moreover, if a positive fraction of the traffic
takes route yc (resp. 7p), then the travel time on + is strictly lower than
that of y¢ (resp. vp). Thus, the unique Nash equilibrium is for all the traffic
to go on the path 7, as shown in the bottom left figure. In this equilibrium,
the average travel time the drivers experience is 2, as shown on the bottom
left. On the other hand, if the drivers could be forced to choose routes that
would minimize the average travel time, it would be reduced to 3/2, the social
optimum, as shown on the bottom right.



Price of Anarchy
[Koutsoupias, Papadimitriou]

* How bad can selfishness be for society?

/?K 1 Selfish equilibrium: 2
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FIGURE 8.6. With the given latency functions, the optimal flow routes x units
of flow on the upper link (and thus 1 — z on the lower link) so as to minimize
the average latency, which is -2 + (1 —z). The Nash equilibrium flow routes
all the flow on the upper link. The resulting price of anarchy is approximately
1.6 for d = 2, approximately 1.9 for d = 3, and is asymptotic to d/Ind as d
tends to infinity.



Price of Anarchy

® How bad can selfishness be for society?

® Previous example is worst case (any network, affine latency
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Pigou-Like Networks
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Equilibria preliminaries
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(a) M/M/1 delay function (b) Extra capacity vs. POA curve

Figure 1: Modest overprovisioning guarantees near-optimal routing. The left-hand figure
displays the per-unit cost c¢(z) = 1/(u — z) as a function of the load x for an edge with
capacity u = 2. The right-hand figure shows the worst-case price of anarchy as a function
of the fraction of unused network capacity.



Definition 5.1. A k-player finite extensive-form
game is defined by a finite, rooted tree 7T'.

Each node in T represents a possible state in the
game, with leaves representing terminal states.

Each internal (nonleaf) node v in T is associ-
ated with one of the players, indicating that it
is his turn to play if/when v is reached.

The edges from an internal node to its children
are labeled with actions, the possible moves
the corresponding player can choose from when
the game reaches that state.

Each leaf/terminal state results in a certain
payoff for each player.



A pure strategy for a player in an extensive-
form game specifies an action to be taken at each of
that player’s nodes.

A mixed strategy is a probability distribution
over pure strategies.

The kind of equilibrium that is computed by back-
ward induction is called a subgame-perfect equi-
librium because the behavior in each subgame, is
also an equilibrium.
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Figure 4.20.: The unique subgame-perfect equilibrium in a two-period repeated Prisoners’
Dilemma. The arrows indicate the equilibrium strategy.
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Network formation games
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3.3 million
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FIGURE 8.10. Three basketball teams are deciding which city to locate in
when four choices are available. It is a Nash equilibrium for all of them to
locate in the largest city where they will each have a utility of 1.1 million. If
one of the teams were to switch to one of the smaller cities, that team’s utility
would drop to 1 million.
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