
Plan for Today

- Strategic behavior related to transaction fees in Bitcoin
- Revisiting basics of equilibria
- Best response dynamics and potential games
- Online learning as a way to play games

Transachen fees in Bitcoin
Q: what well happon when block newards are regligible & all neward is transaction fear.
Model
- transactions arrive at out rate - in an interval of t units of the total and fees in is C.T (C=1) - located an excelled at out rate
- blocks are created at oust rate - R transaction fees available miner can put any traction into block
- miners have everyh space to include everything.
Strategic decisions
- how much of ontstanding transactus to include - when to publish found blocks
Protocol (honest miver) - mive on longest chain (the breaking for what head about mist) - Include all transactor you know about
- Include all transactus you know about
Petty Compliant Strategy
Brest break tres for longest chain wy noist lytoner fees
10 most lytorer tees

OKKKI

f(x)=kx

Theorem 5.1. For any constant $y \le 1/2$ such that $2y - \ln(y) \ge 2$, define:

$$f(x) = x, \quad \forall \ x \le y \tag{1}$$

$$f(x) = -W_0(-ye^{x-2y}), \quad \forall \ y < x < 2y - \ln(y) - 1$$
 (2)

$$f(x) = 1, \quad \forall \ x \ge 2y - \ln(y) - 1 \tag{3}$$

Then it is an equilibrium for every miner to use the strategy Function-fork(f) as long as:

- Every miner is non-atomic.
- Miners may only mine on top of chains of length H or H-1.

Furthermore, in any such equilibrium, the expected number of backlogged transactions after n time steps is $\Theta(\sqrt{n})$.

Selfish mining
good: to brock other mirers into creeting
blocks that well be orphased
- waty private chain

⁵Such y exist. This range is $(0, \approx 0.2]$.

Equilibra-Cost minimi zatur gam. - k players - A; strategies of player i - C; (3) [3=(s,s,,sk)]

(3+ toplays: s; EA; Bisa pur NE & Fi, & siet: c; (s; s;) > c; (s; s;) P=(p1,11pk) are prob distres where p; is a prob distre P is a mixed NE & Vi) Ys! E 3 ~ \$ [C;(si,s.;)] > E 5 ~ \$[C;(si)]

Any frikgame has a mixed NE.

Correlated equilibrium.

Distrip on A, x A, x. x Ak

oner strategy probles

15 a correlated equilibrium y Vi,

V si, si CAi

Esrop [Ci(si)s=i)|si]

Traffic Light

stop (90) (91)

Stop (90) (91)

Dish p on A, x A, x ... x Ark

is a coarse correlated eq (CE of E-april

Ezrip [Ci(3)] = Ezrip [Ci (si, s-i)] + G

R P S

	R	P	5
R	(o, o)	(11)	(1,-1)
P	(1, 1)	(0,0)	(-1,1)
5	(-1,1)	(1,-1)	(0,0)

Best response dynamics.

if this nexts -> pur ME.

not guaranted to reach pur ME

even your exists

2,2	0,0	6,0)
0,0	1,1	-1,1	
0,0	-1,1	1,-1	

Potential games $\vec{\Phi}: TA; \rightarrow R$ $\vec{V} \vec{S} = (s_1, s_2) \quad V; \quad s_1' \in A;$ $\vec{c}: (s_1', s_2;) - \vec{c}: (\vec{s}) = \vec{\Phi}(s_1', \vec{s};) - \vec{\Phi}(\vec{s}')$

Every Spotential game. has a pure NE.

Consider mind

Network formation games

Network formation games
$$\begin{array}{cccc}
(P_1, P_2, \dots, P_K) \\
P_1 & P_2 & P_3 \\
P_4 & P_4 & P_4 \\
P_6 & P_6 & P_7 & P_6 \\
P_6 & P_7 & P_8 & P_8 \\
P_6 & P_8 & P_8 & P_8 \\
P_6 & P_8 & P_8 & P_8 & P_8 \\
P_6 & P_8 & P_8 & P_8 & P_8 \\
P_6 & P_8 & P_8 & P_8 & P_8 \\
P_7 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8 & P_8 \\
P_8 & P_8 & P_8 & P_8$$

Online learning gave against advensary A: set of possible actions player can take each day for t=1, ..., T player picho ac A cie[0] Exp cost on day

The regret of an alg on a sequence of cost vectors $\frac{1}{T} \left[\frac{1}{\zeta_1(a^t)} - \min_{a \in A} \frac{1}{\zeta_1(a)} \right]$ Zplajcta) get regret -God play ach 3 -> cost 1 =) alg pap T 3 acm that has cost 4 T nis # gaulos n=2 Best we can hope for is report Inn Any aly has expect } E min (## #1) = =- F

For each actor maintain weight w=(w+, w+- w+) initialize w'(a)=1 Ya for t=1 to T choose at why prob proportional to wit pta) = wta) guen ct Vachor a $\omega^{t+1}(\alpha) = \omega^{t}(\alpha) \left(1 - \varepsilon\right)^{c^{t}(\alpha)}$ E parameter (0,5) to be set, plays i A: c(·, 5-;) Lat 31, 32, -.. No-regat dynamics. Let p be the uniform distri on 3/32 , 3 P is opprox CCE rounds = T (st) - min (si, st)

rounds