RECAP

View of someone who wants to make a transaction

Want some assurance that this block will be on the longest chain in the long run!

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

PROOF OF WORK: RECAP

View of a miner

RECAP OF BITCOIN

- Transactions: At any time, any buyer b can generate a transaction to pay d BTC to seller s.
- Block: A block consists of
- A set of transactions
- A cryptographic hash of the previous block (pointer to previous block
- An ID of the miner for this block
- A nonce.
- A set of properly signed transactions is valid if no account ever overspent its limit.
- A block is valid if
- It points to a valid block.
- All transactions on the chain to B are valid.
- SHA256(nonce|| info in block) has k leading zeros.

RECAP OF BITCOIN II

- Mining: the process of extending the blockchain from some block B.
- Longest Chain Protocol (for miners):
- Choose B to be the block furthest from the root, tiebreaking in favor of the first block you heard about.
- Include all valid transactions you've heard about.
- As soon as valid block created, announce it to the network.
- Miners are paid for creating valid blocks with freshly minted Bitcoins and with transaction fees.
- Difficulty of the puzzle is adjusted every 2016 blocks with the objective of making it so that a block takes 10 minutes to make in expectation.

KEY IDEA

- Trust the ledger that has the most "computational work" put into it.
- Ensure that fraudulent transactions/conflicting ledgers would require an infeasible amount of computation to create.

BITCOIN

- Is a mechanism.
- Question for us: are there beneficial deviations that can help a miner earn more than his fair share of rewards?
difficulty adjustment:
longest chain gets extended by block on arg every to ming.

What on a miner do?
[-choose any black trey know

- deliberately fork, "distonnt tie-breakng" - hide ablock one e trey find it. - include any wald trosactors you wart.

Double spending attacks

my ming pen is α chare this happens is α^{3}

$$
\alpha>51 \%
$$

Selfish Mining.
Mung game:
Set of miners
x_{m} fracth g mingpenen that miven on has

$$
\sum_{m} x_{m}=1
$$

At olltries, each minen is aware f trea divected towads roet G_{m} [gioph firce
 rodes apresent blocks.
at each tiret, arandom miren is selected to mine ablouk. Miven m is selected uf prd xm at each the step, each minen, can pick any rode vin Gm \& broadcast pata from v to root.

Fix minen m

Panglb to a miven is lon \#d blecks treyue mived on tre louget public chain at tre?
m

Assumption: if miner m is in atie mra any dou block for lought chain, avenge due mines on m's chain.
mien m will mire on longest chain, breaking ties in ffoorg' his ownblaks, but url only broadest a block he has found y I anotuen block at same distance from

reward frack f his blacks on longest chain.
$T \alpha$ blocks in T tree steps.
kills Ta blocks on longest chain

$$
\frac{T \alpha}{T(1-\alpha)}=\begin{aligned}
& \frac{\alpha}{1-\alpha}>\alpha \\
& \frac{\alpha=\frac{1}{3}}{}
\end{aligned} \quad \frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}
$$

Gm his view

$$
h_{m}=\text { light }\left(G_{m}\right)
$$

G publicuiew
Miner strategy

- always work onlongst chair wing imp.
- Breaths hies in favor g his own blocks
- Block announcing strategy If another miner finds ablock at height h, tran
\rightarrow if $h_{m} \geqslant h+2$, announce h
- if $h_{m}=h+1$, announce $h \& h+1$
- if $h_{m}=h$ announce $h_{\text {. Moreover, }}$ if m finds root block immediately announce ts.
state $\quad i=0,1,2, \ldots$

state weans $h_{m}=h+i$ $0^{\prime}: \quad b=h_{m} \&$ there is fork

Marker Chain has
Set states S
\forall state n,
$q_{u v}=$ Prob meat state is v) current state is a

$$
\sum_{v} q_{u v}=1
$$

weill count ablock when it is frist announced \& guaranteed to beon longest chain

Selgish payd
Selfsh pudl + threst payd
exp pogd of selfsh miven w/ mig ponen α assuming losesall ties is

$$
\frac{4 \alpha^{2}(1-\alpha)^{2}-\alpha^{3}}{1-\alpha(1+\alpha(2-\alpha))} \quad \frac{2}{2} \quad \text { tre when } \alpha>0.3
$$

$$
\frac{\alpha}{1-\alpha}>\alpha
$$

The Miner's Dilemma.
minngpods used to redon the variance. pool manages that joins Bitcoin as single mimes

use partial prof of wank to Gigue ort tow to spit rewards among The pod gave:

block rods R_{1} : $\frac{m_{1}-x_{12}}{m-x_{12}}$
Pool 1 attaches Pool a if $\frac{1}{2}$ of its total pres
$R_{2} \circ \frac{m_{2}}{m-x_{12}}$
ut $\frac{1}{2} g$ its total
Pool $1: \frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{4}}=\frac{1}{3}$

Pool 1 abs gets $\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{2}}=\frac{1}{3}$
Pool 1 man $\frac{1}{3}+\frac{1}{3} \cdot \frac{2}{3}=\frac{5}{9}$

NE as lang as both pools $<80 \%$
pol 2 pol 2

