Plan for Today

- Continue with auctions
 - Sponsored Search
 - The VCG auction
 - The FCC Incentive Auction

Last time
Vy Vy - are
private values

$$y = y_{1}$$
 by Andry alreadon
 $y = y_{2}$ by Andry alreadon
 $y = y_{1}$ by a locaton
 $y = y_{1}$ by the biden
 $y = y_{1}$ by the biden bids to nonumize
(expected) whiley given beliefs about others
 $y = y_{1}$ by given beliefs about others
 $y = y_{1}$ by another $y = y_{2}$ whiley doubten
 $y = y_{1}$ by another y_{2} by income computed
 $y = y_{1}$ by another y_{2} income computed
 $y = y_{2}$ by income the strategy to
 $y = y_{2}$ by an value

abo "individually rational" IR
= bidden's utility guaranteed to
be nonnegative
maximizes "welface"
also called "suplus"
= total happiness g all panhicipants.
= sum g ulutines
=
$$\sum_{i=1}^{n} (v_i 1_i unus item - p_i) + \sum_{i=i}^{n} p_i$$

utteling g bidden i utteling g
anchoneut.
= $\sum_{i=1}^{n} v_i 1_i$ unus

Advertising – how it used to be


```
Pay-per-impression
```

Price depends on how many people your advertisement is shown to.

(whether or not they look at it, or care about it)

"Half the money I spend on advertising is wasted; the trouble is, I don't know which half" Andrew Wanamaker, advertising pioneer

How is the price determined?

Complicated negotiations with high monthly premiums,

forms a barrier to entry for small advertisers.

Modern Advertising

On the web, Many different kinds of ads ...

Sponsored Search Ads

Lab tests or imaging always required

Price determined by auction – per keyword

"Most people don't realize that all that money comes in pennies at a time" Hal Varian, Google Chief Economist How are these ads different than the ads in the offline media?

In many cases: Pay-per-click

-

Model

V(b auchon for sponsored search
(cet a bid from lack bidden
Relabel bids so b, > b, > b, > ... > b_n
for i= 1..k assign bidden i to its bit.
for i= 1..k, for sech cleck, change bidden i

$$p_{i} = \frac{1}{c_{i}} \sum_{j=i+1}^{k+1} b_{j} (c_{j-1} - c_{j})$$
Provide the provided of the pro

Faubook

V;•Cj

more appropriate model. bidden has value for each event type

difficult for advertisions to figure out CTRS

 $P_{i} = \max_{w \in \mathcal{N}} \sum_{j \neq i} b_{j}(w^{*})$

$$u_{i} = V_{i}(u^{t}) - p;$$

$$= V_{i}(u^{t}) + \sum_{j \neq i} b_{j}(u^{t}) - \max_{\substack{i \neq i \\ i \neq i}} \sum_{\substack{i \neq i \\ i \neq i}} b_{i}(u^{t}) + b_{i}(u^{t})$$

FIGURE 16.3. The label on the edge from i on the left to j on the right is the value v_{ij} that employee i has for a yearly lease of house j (say in thousands of dollars). The VCG mechanism allocates according to purple shaded edges. The payment of bidder a is 0 since in his absence house 3 is still allocated to bidder b. The payment of bidder b is 1 since in his absence the allocation is as follows: house 2 to bidder a and house 3 to bidder c, and therefore the externality he imposes is 1.