Game Theory Basics

- Game theory is designed to model
- How rational (payoff-maximizing) "agents" will behave
- When individual outcomes are determined by collective behavior.
- Rules of a game specify agent payoffs as a function of actions taken by different agents.

Let's play the median game

- On the index card, write down
- Your name
- An integer between 0 and 100 (inclusive).
- After we collect all the index cards, the person (or people) whose selected number is closest to $2 / 3$ of the median of all the numbers (rounded down) wins a prize.
- E.g., if the numbers are 3, 4, 5, 38, 60, 70, 70, 90, 100

Prisone's Dilemna

| Prisoven II | |
| :--- | :---: | :---: |

Confess/betray is best respouse no metten what.
dominates stay sitent.
(Betray, Betray) is a dominant stratery.
Not a Pareto optinal strategy pair.
Game: \#pplagus n.
for each playen, S_{i} set of achows trat playeni

$$
\forall \text { strategy profile } \vec{s}=\left(s_{1}, s_{2}, \cdots, s_{n}\right) \quad\left(s_{i} \in S: \forall i\right)
$$

\vec{s} represerts seto actions/shategies
selected $u_{i}(\vec{s})$ is payofl to playeni when the playes play shategy profle \vec{s}

Definition 2.2. A strategy s^{*} for player i is a best response to the strategies s_{-i} of others if it maximazes i 's utility/payoff. That is

$$
u_{i}\left(s^{*}, s_{-i}\right) \geq u_{i}\left(s, s_{-i}\right)
$$

for all $s \in S_{i}$.

Definition 2.3. Strategy s_{i} (strictly) dominates strategy s_{i}^{\prime} if no matter what other players are doing, i 's payoff playing s_{i} is at least as good (strictly better) than i 's payoff playing s_{i}^{\prime}.

$$
u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \quad \forall s_{-i} \forall s_{i}^{\prime} \in S_{i} \backslash s_{i} .
$$

If strategy s_{i} (strictly) dominates all strategies in S_{i}, then it is a (strictly) dominant strategy.

Definition 2.4. A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a dominant strategy equilibrium if for each player i, s_{i} is a dominant strategy.

Arvetuen setting P2P retroutes - free riding

thy each hal efik that is desired by aten.
decision: to upload desired file ar not.
benefit of recelvy oik 3
cost of uploading file 1
nt uploading is a dominant strategy

Pollution Game: n countries,
PDelliten control Yes or no to legislation to control pollution/ emissions
each country that pollutes colds 1 unity cost to all countries k comiries are pollining $n-k-1$ overt. pollute. dort pollute dovinart strategy $k+1 \quad k+3$ to pollute.

Startup Game: Q: whetren to euten acentain market or not.

Stantup.

for Minoscft
Entering dominates Staying ont
Therefore Stastup can safoly assume that Microsgt urle do so
Mingosit stimatp
(Funten, Stay Out) is a Nashequilibrium i.e. each playen is best respardingto the omen

Definition 2.8. A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a Nash equilibrium if for every i, s_{i} is a best response to s_{-i}.

Iterated Deletion of Dominated Strategies

- Deletion of a dominated strategy: find a player i and a strategy $b \in S_{i}$ such that $a \in S_{i}$ weakly dominates strategy b. Delete strategy b from S_{i}.
- Update definition of what's dominated (assuming b will never be played).
- Iterate until no weakly dominated strategy remains.

If each player has only a single remaining strategy, we say that the game is solvable by iterated deletion of dominated strategies, and we say that iterated deletion of dominated strategies predicts that each player will play their only remaining response.

Caveat: only good predictor of otrenwise predictor retuniqua
 $b_{i} a$ if \forall_{s-i}
$\left.u_{i}, s_{-i}\right)>u_{i}\left(b_{1} s_{-i}\right)$
deleted only strongly donates arden)

Back to the median game

- On the index card, write down
- Your name
- An integer between 0 and 100 (inclusive).
- After we collect all the index cards, the person (or people) whose selected number is closest to $2 / 3$ of the median of all the numbers (rounded down) wins a prize.

$2 / 3^{20}=66$

Iterated Deletion of Dominated Strategies

- Deletion of a dominated strategy: find a player i and a strategy $b \in S_{i}$ such that $a \in S_{i}$ weakly dominates strategy b. Delete strategy b from S_{i}.
- Update definition of what's dominated (assuming b will never be played).
- Iterate until no weakly dominated strategy remains.

If each player has only a single remaining strategy, we say that the game is solvable by iterated deletion of dominated strategies, and we say that iterated deletion of dominated strategies predicts that each player will play their only remaining response.

Bob.

Alive

Definition 2.2. A strategy s^{*} for player i is a best response to the strategies s_{-i} of others if it maximazes i 's utility/payoff. That is

$$
u_{i}\left(s^{*}, s_{-i}\right) \geq u_{i}\left(s, s_{-i}\right)
$$

for all $s \in S_{i}$.

Definition 2.8. A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a Nash equilibrium if for every i, s_{i} is a best response to s_{-i}.

Network coordinate games
each rode is person.
acton set: usetre app or rot.

Prog Proj I:
usnews - highest qually
synergist - highest synengy
holist - highest quaenty + synengy
random

Parking Game.

$$
\begin{gathered}
-10(1-p) \geqslant-p-6(1-p) \\
p \geqslant 4(1-p) \\
5 p \geqslant 4 \\
p \geqslant \frac{4}{5}
\end{gathered}
$$

legre bettes than ilegal

$$
\begin{aligned}
& 0 \geqslant 109^{-90(1-9)} \\
& 90 \geqslant 1009 \\
& \frac{9}{10} \geqslant 9
\end{aligned}
$$

$\left(\frac{4}{5}, \frac{9}{10}\right)$ is a Nash Eg in Rixedstatgies
Parten." al with vob t/9

Definition 4.1. A mixed strategy is a probability distribution over pure strategies.

Definition 4.2. A strategy profile $\left(x_{1}, \ldots, x_{n}\right)$ where each x_{i} is possibly a mixed strategy $x_{i}: S_{i} \rightarrow$ probability distribution and $\sum_{s \in S_{i}} x_{i}(s)=1$ is a (mixed) Nash equilibrium if for each i,

$$
\sum_{s \in S_{i}, s_{-i} \in S_{-i}} x_{i}(s) \operatorname{Prob}\left(s_{-i}\right) u_{i}\left(s, s_{-i}\right) \geq
$$

$$
\sum_{s_{-i} \in S_{-i}} \operatorname{Prob}\left(s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right)
$$

Expected payoff higher using mixed strategy x : than using any pure strategy when ovens play x_{j} (mixed strategy)
Expected payoff) utility of playen: when he plays s :

	party	stay home
party	2,2	$-1,0$
stay home	$0,-1$	0,0

This gave has 2 pore equilibria It also has a mixed NE where each plage parties unto prob $\frac{1}{2}$ \& stays hover ب1perb 8

$$
\begin{aligned}
& 3 p-1=\begin{aligned}
2 p-(1-p) \\
1-p
\end{aligned}\left(\begin{array}{cc}
p & 1-p \\
2,2 & -1,0 \\
0,-1 & 1,1
\end{array}\right) \\
& \begin{array}{l}
3 p-1=1-p \\
4 p=2
\end{array} \quad \begin{array}{l}
p=\frac{1}{2} \quad \text { exp paydl }=\frac{1}{2} .
\end{array} \begin{array}{l}
\text { lower tran } \\
\text { both } \\
\text { pure eq }
\end{array}
\end{aligned}
$$

Fact 4.4. Indifference principle: If a mixed strategy of player i in a Nash equilibrium randomizes over a set of pure strategies $T_{i} \subset S_{i}$, then the expected payoff to the player from each pure strategy in T_{i} must be the same. And the payoff from any other strategy must be at most this high.

Summary so far

- A Nash equilibrium is a set of stable (possibly mixed) strategies.
- Stable means that no player has an incentive to deviate given what the other players are doing.
- Pure equilibrium: there may be none, unique or multiple. Can be identified with "best response diagrams".
- A joint mixed strategy for n players:
- A probability distribution for each player (possibly different)
- It is an equilibrium if
- For each player, their distribution is a best response to the others.
- Only consider unilateral deviations.
- Everyone knows all the distributions (but not the outcomes of the coin flips).
- Nash's famous theorem: every game has a mixed strategy equilibrium.

Issues

- Does not suggest how players might choose between different equilibria
- Does not suggest how players might learn to play equilibrium.
- Does not allow for bargains, side payments, threats, collusions, "preplay" communication.
- Computing Nash equilibria for large games is computationally difficult.

Other issues

- Relies on assumptions that might be violated in the real world
- Rationality is common knowledge.
- Agents are computationally unbounded.
- Agents have full information about other players, payoffs, etc.

Zero-sum games Penalty Kicks. Goalie.

$$
\begin{aligned}
& =\begin{array}{l}
+0.9(1-p) \quad p+0.0(1) \\
=0.90
\end{array} \\
& =0.9-0.4 p \quad 0.8 .^{0^{x}} \\
& \max _{p}^{\min \left(g_{G \rightarrow L}, g \rightarrow R\right)} \text { gain }
\end{aligned}
$$

Suppose Kitchen says L min prob p.

"Kuchen goes dist"

Suppose Kicker must announce p (gated go tire is kisser's best choice for p ?

Choosing $p^{*}=\frac{1}{6} \quad\left(\begin{array}{l}\text { kick left ut prob } \\ \text { kick ing ht ut }\end{array}\right.$
marius kickers expected gain of she has to armance first, i.e. is the p that maximizes $\min (p+0.8(1-p), 0.5 p+0.9(1-p)))$

If kicker plays p^{*}, she guarantees herself an expected paid of $\quad \frac{1}{6}+0.8\left(1-\frac{1}{6}\right)=\frac{5}{6}=V_{1}$
"Goalie goes first"

Supposed kicker \Leftarrow gets to beatreopond to Goalies mixed strategy (q-dive left,
right, What is goal es best choice for 9 ?
choosing $q^{*}=\frac{1}{3}$ (dive left with prob $\frac{1}{3}$ and minimizes goalie's expected loss y he has to announce first. ie. minimizes

$$
\begin{aligned}
& \text { ie. minimize n }, 0.5 q+1-q) \\
& \operatorname{mox}(0.9 q+0.8(1-q),
\end{aligned}
$$

If Goalie goes first, he can guarantee himself a loss g at most $0.9 \cdot \frac{1}{3}+0.8 \frac{2}{3}=\frac{5}{6}=V_{2}$

V: exp paygl the kicker an guanarter himself of he has to go first.
V_{2} : exp payoff the luclue can guarantee himself ing he can go second. = mindless the goale to cor gust. granter of he has
Theorem 4.5 (John vol Neumann, 1928). Let V_{1} be the expected gain that player I (maximizer) can guarantee herself in the worst case, and let p^{*} be the mixed strategy that achieves V_{1}. Let V_{2} be the low-
 est expected loss that player II (minimizer) can limit his loss to in the worst case and let q^{*} be the mixed strategy that achieves V_{2}.

Then for any 2-player, zero sum game $V_{1}=V_{2}=$ V (called the minimax value of the game) and $\left(p^{*}, q^{*}\right)$ is a Nash equilibrium.

Summary - zero-sum games

- Zero-sum games have a "value".
- Optimal strategies are well-defined.
- Maximizer can guarantee a gain of at least V by playing p^{*}
- Minimizer can guarantee a loss of at most V by playing q^{*}.
- This is a Nash equilibrium.
- In contrast to general-sum games, optimal strategies in zero-sum games can be computed efficiently (using linear programming).
is00 peralty lucls
$0.4230 .577<$ acturel obsenved fractorv $0.420 .58 \longleftarrow$ ophinel strateges ingame

Extensire Form Games.

Definition 5.1. A k-player finite extensive-form game is defined by a finite, rooted tree T.

- Each node in T represents a possible state in the game, with leaves representing terminal states.

- Each internal (nonleaf) node v in T is associated with one of the players, indicating that it is his turn to play if/when v is reached.
- The edges from an internal node to its children are labeled with actions, the possible moves the corresponding player can choose from when the game reaches that state.
- Each leaf/terminal state results in a certain payoff for each player.

Mutal Assured Destrition. A aggossue, B bemigns

subgame puyet NE

$$
2 N E
$$

A pure strategy for a player in an extensiveform game specifies an action to be taken at each of that player's nodes.

A mixed strategy is a probability distribution over pure strategies.

The kind of equilibrium that is computed by backward induction is called a subgame-perfect equilibrium because the behavior in each subgame, is also an equilibrium.

Centipede,

Figure 6.4. The top part of the figure shows the game and the resulting payoffs at each leaf. At each node, the "greedy" strategy consists of following the downward arrow, and the "continue" strategy is represented by the arrow to the right. Backward induction from the node with pot-size 99 shows that at each step the player is better off being greedy.

gansy pefet info

Figure 6.11. The figure shows the Large Company vs Startup game. Prior to the beginning of the game, player I announces her new technology. At the beginning of the game, there is a move by nature, which determines whether or not II actually can pull together a competitive product. Only player II is privy to the outcome of this move by nature. The two nodes at which player I makes a move form a single information set: player I does not know which of these states she is in. All she knows is that II has announced a competitive product, and knowing only that, she has to decide between competing with the giant or letting the giant buy her out. Thus, her strategy is the same at both nodes in the information set.

Repeated Provers Dilemma.

Infinity repeated gave with discounting. Fix $\quad \beta<1$

$$
\begin{aligned}
& \text { Fix } \quad \beta<1 \\
& \text { discounted paycff }=\sum_{t=1}^{\infty}\left(\beta^{t}\binom{\text { the players pay cl }}{\text { in round } t}\right.
\end{aligned}
$$

- B prob gave continues.

Grim Trigger: Cooperate unite a round
un which your opporat defects, then defect from then on.

$$
\begin{aligned}
& 6 \sum_{j \geq t} \beta^{+}>8 \beta^{+}+2 \sum_{j>t} \beta^{j} \text { when } 2 \beta^{+}<4 \sum_{j=t} \beta^{j}=\frac{4 \beta^{t-1}}{1-\beta} \\
& 1-\beta<2 \beta \Rightarrow \beta>\frac{1}{3}
\end{aligned}
$$

 Cooperak in round $k>1$
in payy round $k>1$
play what younporearpage
in round $k-1$
player II

		cooperate (C)	defect (D)
\%	cooperate (C)	$(6,6)$	$(0,8)$
	defect (D)	$(8,0)$	$(2,2)$

Figure 6.14. Illustration of deviation in Tit-for-Tat strategies

