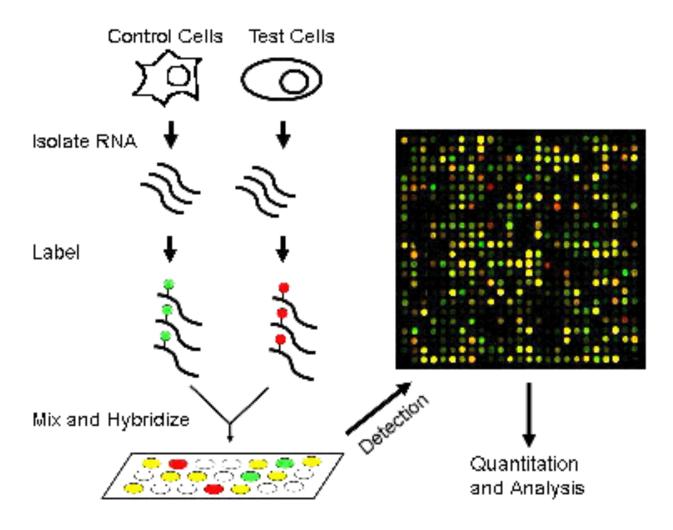
CSEP 590 B Computational Biology

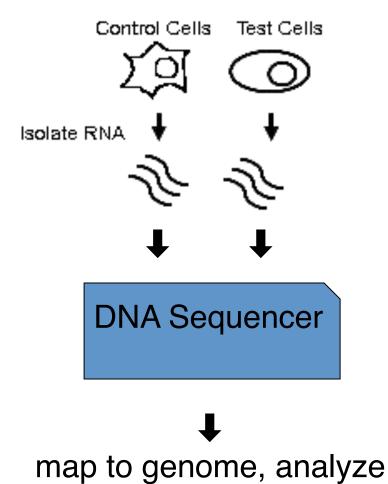
Gene Expression Analysis

Assaying Gene Expression

Microarrays



RNAseq



Goals of RNAseq

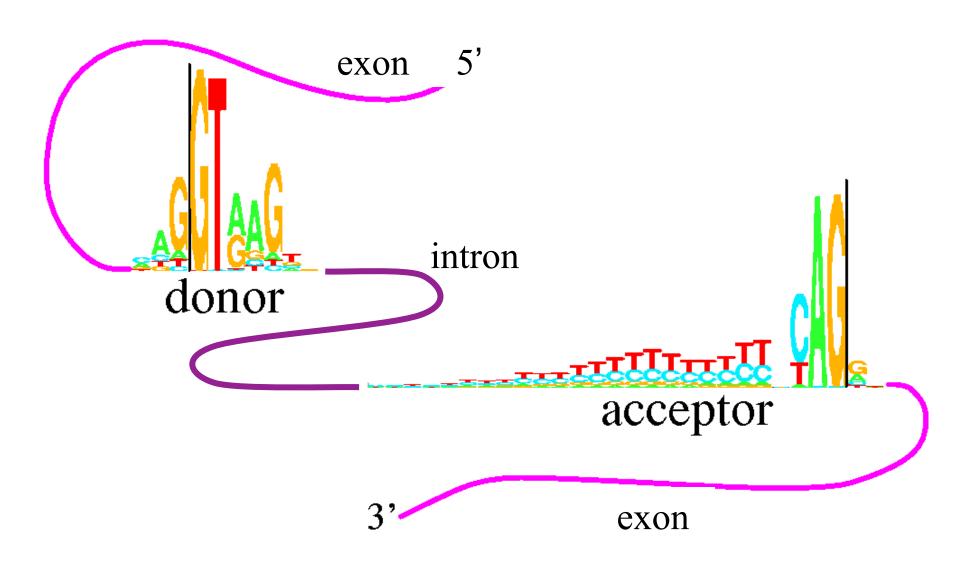
- #1: Which genes are being expressed?

 How? assemble reads (fragments of mRNAs) into (nearly) full-length mRNAs and/or map them to a reference genome
- #2: How highly expressed are they?

 How? count how many fragments come from each gene—expect more highly expressed genes to yield more reads, after correcting for biases like mRNA length
- #3: What's same/diff between 2 samples E.g., tumor/normal

#4:...

Recall: splicing



RNAseq Data Analysis

De novo Assembly

mostly deBruijn-based, but likely to change with longer reads more complex than genome assembly due to alt splicing, wide diffs in expression levels; e.g. often multiple "k's" used pro: no ref needed (non-model orgs), novel discoveries possible, e.g. very short exons

con: less sensitive to weakly-expressed genes

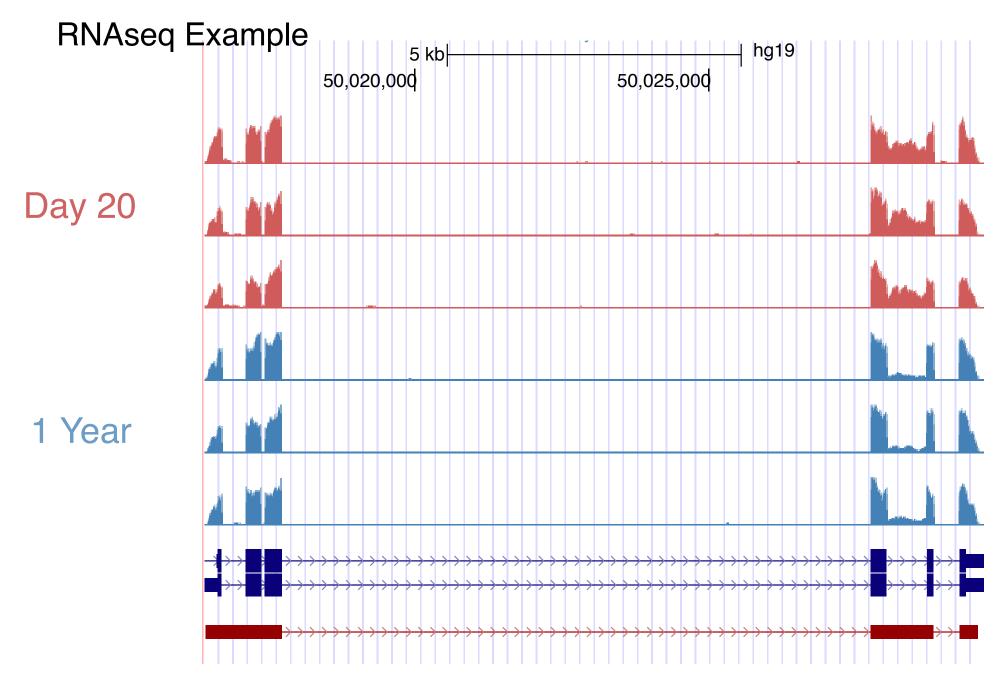
Reference-based (more later)

pro/con: basically the reverse

Both: subsequent bias correction, quantitation, differential expression calls, fusion detection, etc.

"TopHat" (Ref based example)

- map reads to ref transcriptome (optional)
- map reads to ref genome
- unmapped reads remapped as 25mers
- novel splices = 25mers anchored 2 sides
- stitch original reads across these
- remap reads with minimal overlaps
- Roughly: 10m reads/hr, 4Gbytes (typical data set 100m-1b reads)



RNAseq protocol (approx)

Extract RNA (maybe by polyA ↔ polyT)

Reverse-transcribe into DNA ("cDNA")

Make double-stranded, maybe amplify

Cut into, say, ~300bp fragments

Add adaptors to each end

Sequence ~100-175bp from one or both ends

CAUTIONS: non-uniform sampling, sequence (e.g. G+C), 5'-3', and length biases

Bias Correction in RNAseq

Walter L. (Larry) Ruzzo

Computer Science and Engineering
Genome Sciences
University of Washington
Fred Hutchinson Cancer Research Center
Seattle, WA, USA

BIOINFORMATICS

ORIGINAL PAPER

Vol. 28 no. 7 2012, pages 921–928 doi:10.1093/bioinformatics/bts055

Gene expression

Advance Access publication January 28, 2012

A new approach to bias correction in RNA-Seq

Daniel C. Jones^{1,*}, Walter L. Ruzzo^{1,2,3}, Xinxia Peng⁴ and Michael G. Katze⁴

*Espartment of Computer Science and Engineering, University of Washington, Seattle, WA 98195-2350,

²Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065,

³Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and

⁴Department of Microbiology, University of Washington, Seattle, WA

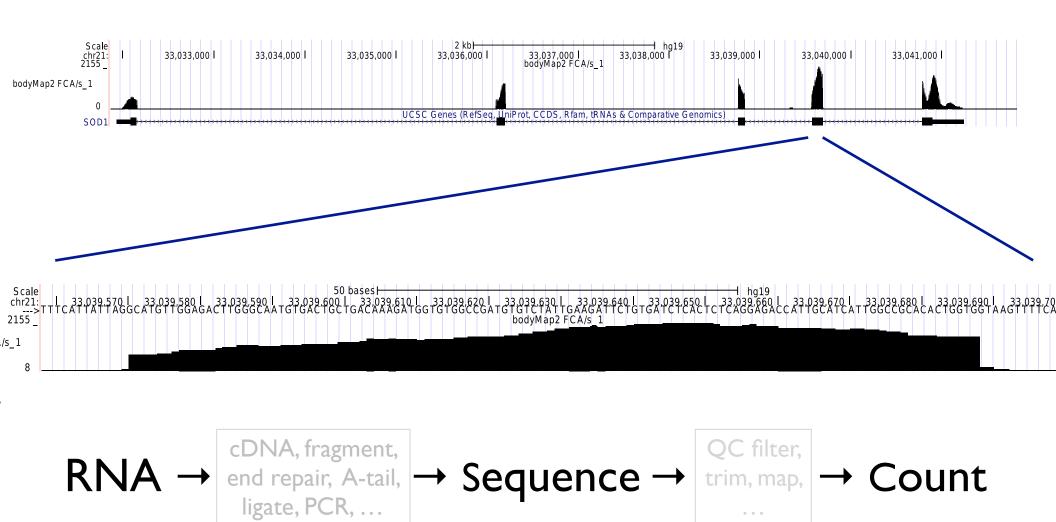
Associate Editor: Alex Bateman

ABSTRACT

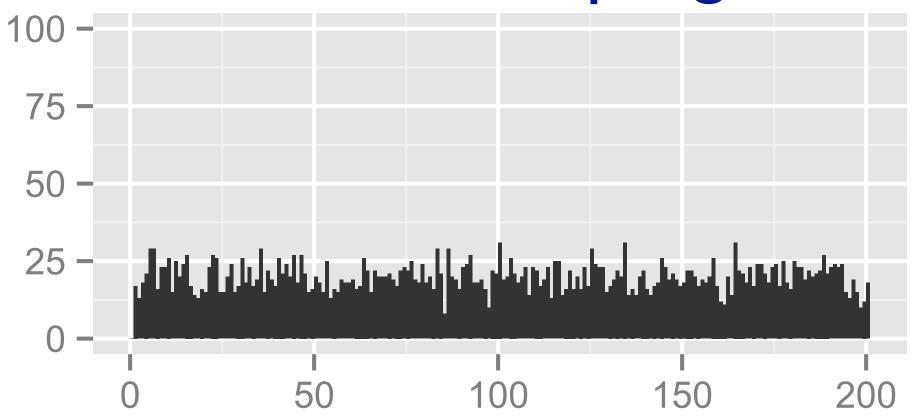
Motivation: Quantification of sequence abundance in RNA-Seq experiments is often conflated by protocol-specific sequence bias.

These biases may adversely of

RNA seq



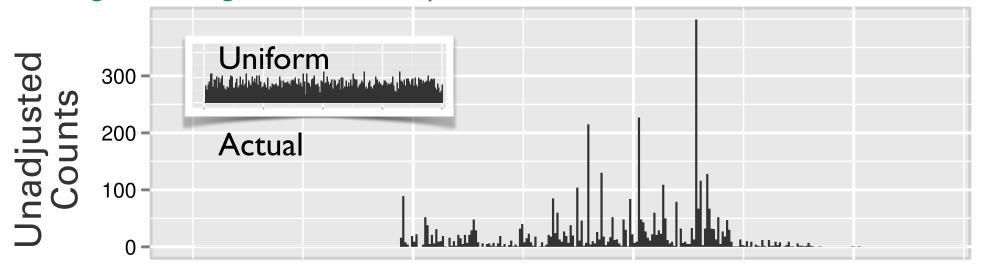
What we expect: Uniform Sampling

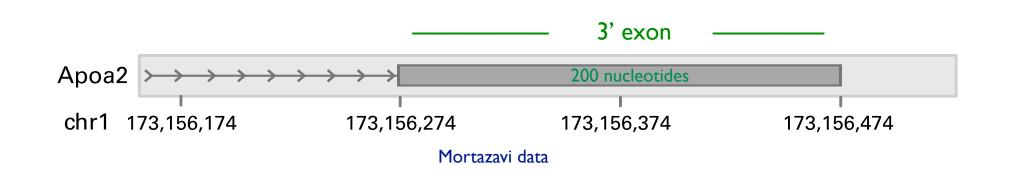


Uniform sampling of 4000 "reads" across a 200 bp "exon." Average 20 \pm 4.7 per position, min \approx 9, max \approx 33 l.e., as expected, we see \approx μ \pm 3 σ in 200 samples

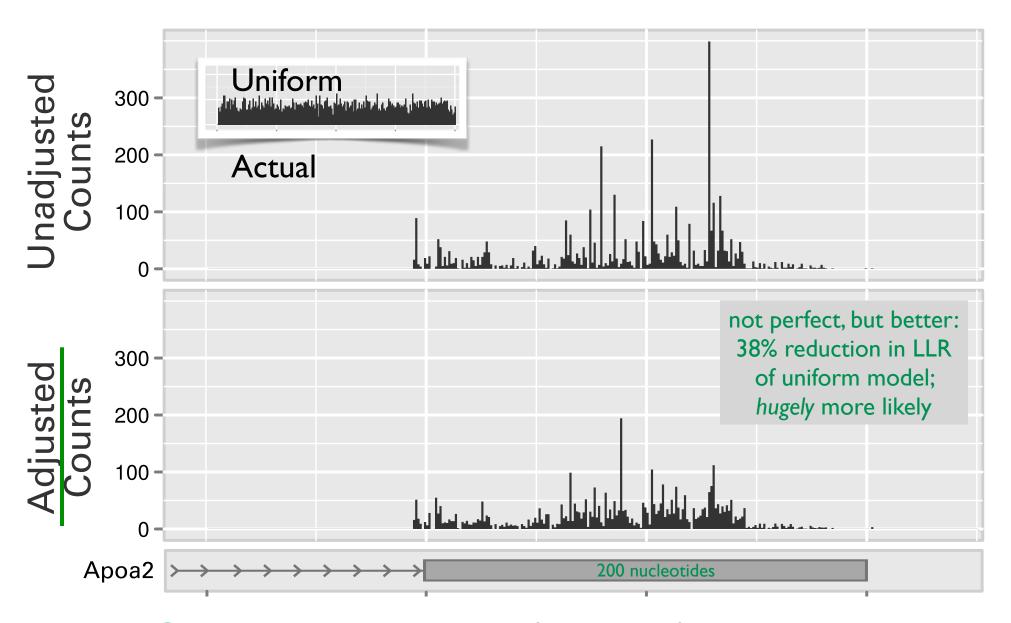
What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are $\gtrsim +10\sigma$ above mean



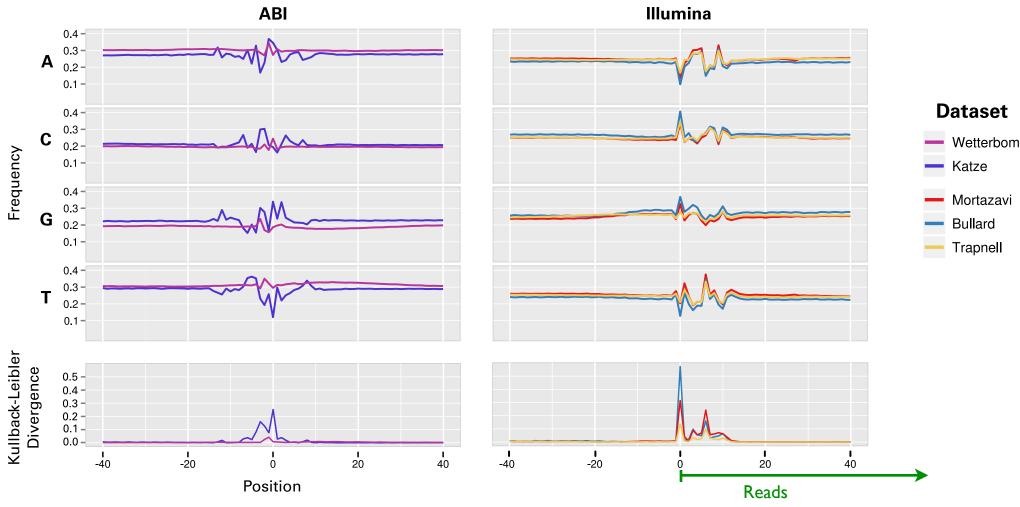


What we get: highly non-uniform coverage



The Good News: we can (partially) correct the bias

Bias is sequence-dependent



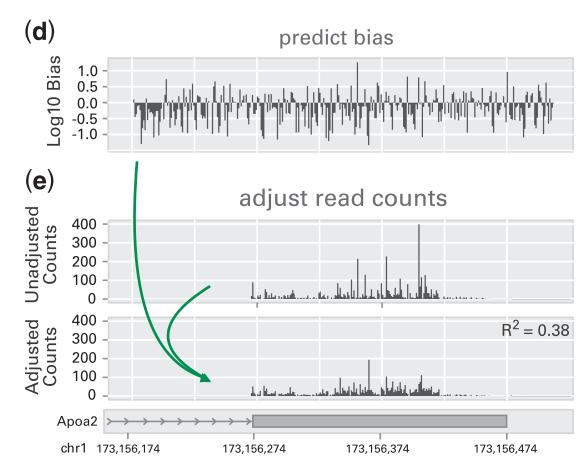
and platform/sample-dependent

Fitting a model of the sequence surrounding read starts lets us predict which positions have more reads.

(a) sample foreground sequences

(b) sample background sequences

(c) train Bayesian network



Want a probability distribution over k-mers, $k \approx 40$

Some obvious choices

Full joint distribution: 4^k-1 parameters

PWM (0-th order Markov): (4-1)•k parameters

Something intermediate

Directed Bayes network

Form of the models:

Directed Bayes nets



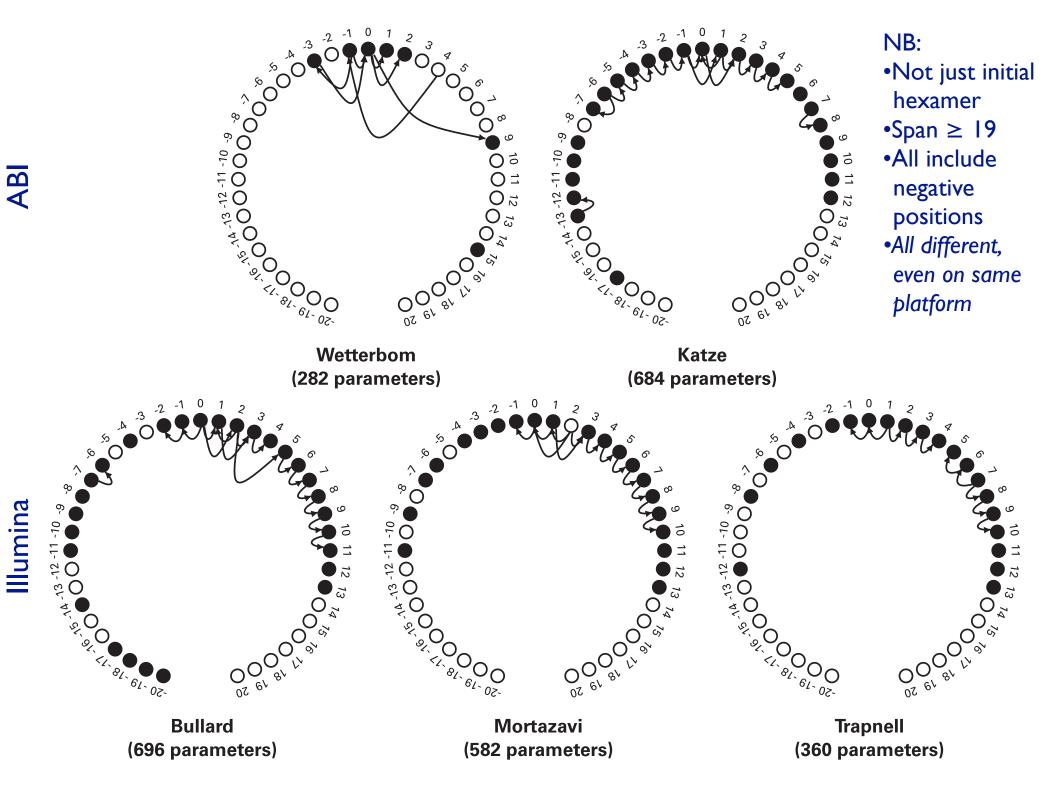
Wetterbom (282 parameters)

One "node" per nucleotide, ±20 bp of read start

- Filled node means that position is biased
- Arrow i → j means letter at position i modifies bias at j
- For both, numeric
 parameters say how much

How-optimize:

$$2 = \sum_{i=1}^{n} \log \Pr[x_i | s_i] = \sum_{i=1}^{n} \log \frac{\Pr[s_i | x_i] \Pr[x_i]}{\sum_{x \in \{0,1\}} \Pr[s_i | x] \Pr[x]}$$



Formally...

A reasonable definition of unbiasedness:

Pr(read at i) = Pr(read at i|sequence at i)

From Bayes...

$$\Pr(\text{read at } i|\text{sequence at } i) = \frac{\Pr(\text{sequence at } i|\text{read at } i) \Pr(\text{read at } i)}{\Pr(\text{sequence at } i)}$$

So we might define **bias** as

bias at position
$$i = \frac{\Pr(\text{sequence at } i | \text{read at } i)}{\Pr(\text{sequence at } i)}$$

Conditional Log-Likelihood

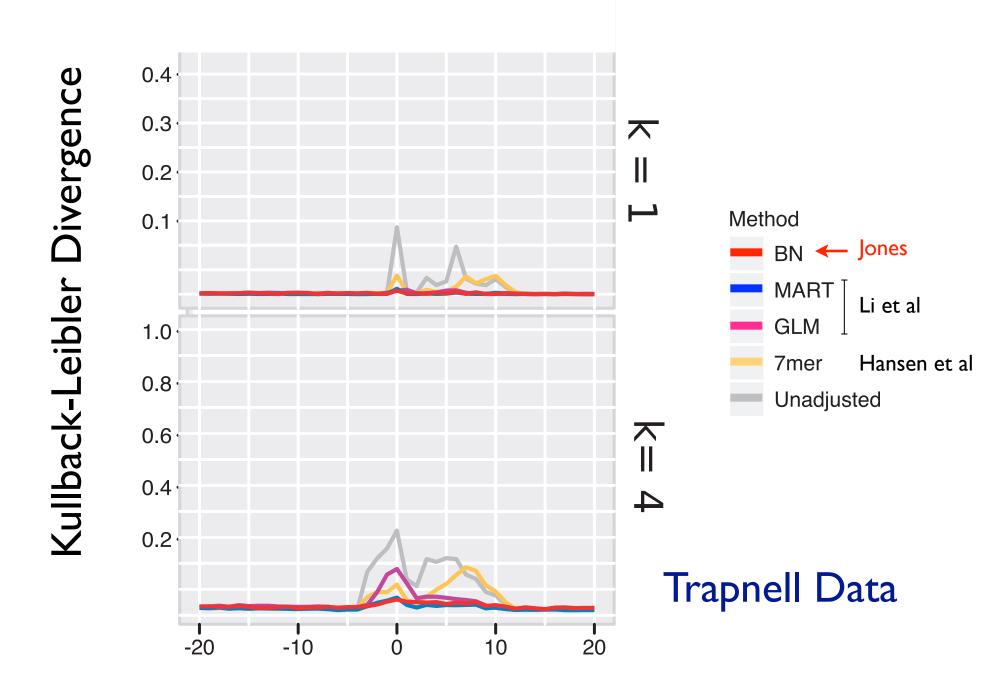
Find a graph that maximizes conditional log-likelihood.

$$CLL = \sum_{i=1}^{n} Pr(x_i|s_i)$$

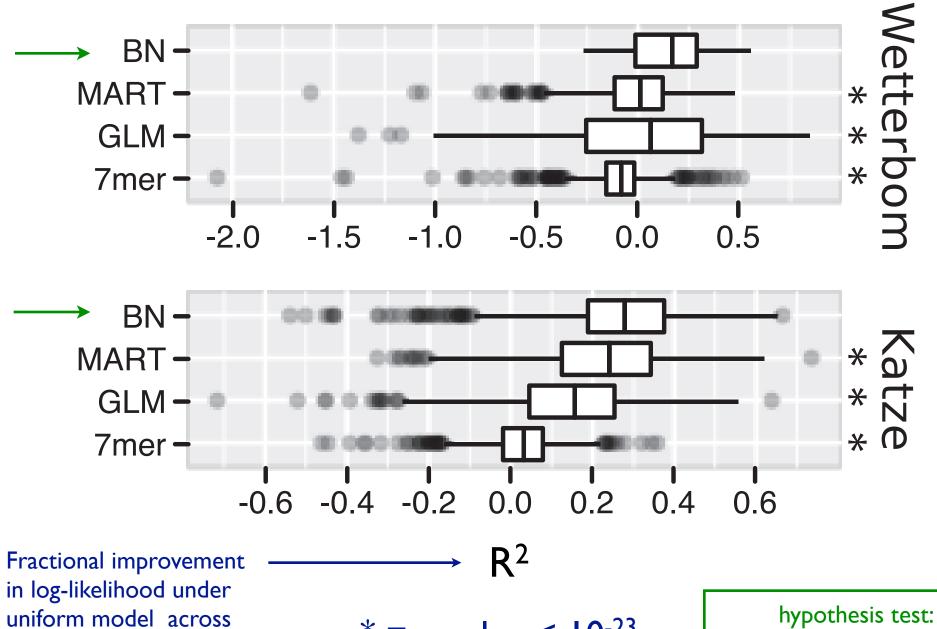
We need to penalize for model complexity as well.

$$CLL' = 2 \sum_{i=1}^{n} \operatorname{Pr}(x_i|s_i) - m \log n$$

Result – Increased Uniformity



Result – Increased Uniformity



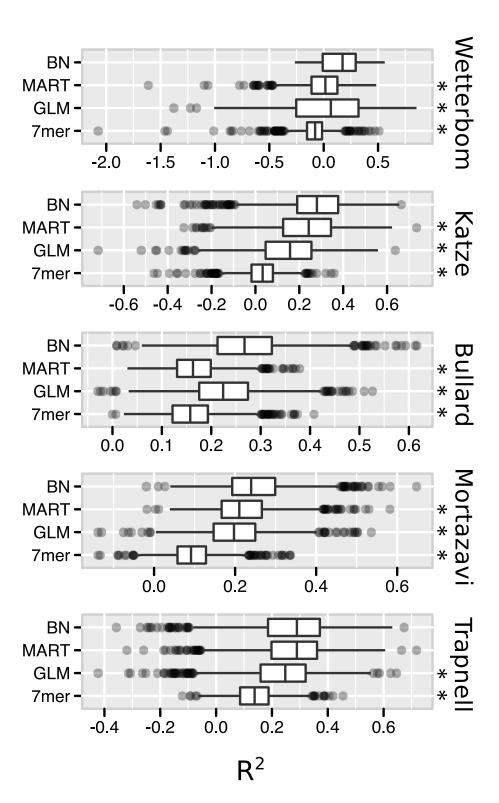
 $1000 \text{ exons } (R^2=1-L'/L)$

* = p-value < 10⁻²³

hypothesis test:

"Is BN better than X?"

(1-sided Wilcoxon signed-rank test)



"First, do no harm"

Theorem:

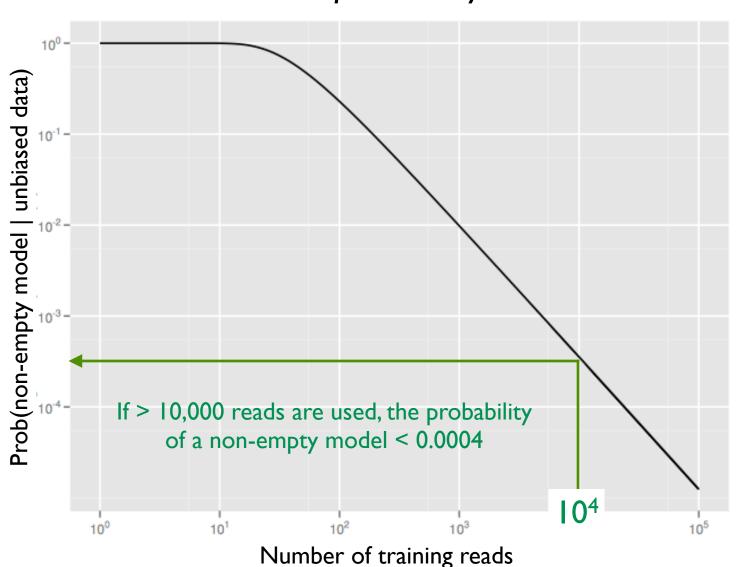
The probability of "false bias discovery," i.e., of learning a non-empty model from *n* reads sampled from *un*biased data is less than

$$I - (\Pr(X < 3 \log n))^{2h}$$

where h = number of nucleotides in the model and X is a random variable that (asymptotically in n) is χ^2 with 3 degrees of freedom. (E[X] = 3)

"First, do no harm"

Theorem: The probability of "false bias discovery," i.e., of learning a non-empty model from n reads sampled from unbiased data, declines exponentially with n.



how different are two distributions?

Given: r-sided die, with probs $p_1...p_r$ of each face. Roll it n=10,000 times; observed frequencies = $q_1, ..., q_r$, (the MLEs for the unknown q_i 's). How close is p_i to q_i ?

Kullback-Leibler divergence, also known as relative entropy, of Q with respect to P is defined as

$$H(Q||P) = \sum_{i} q_{i} \ln \frac{q_{i}}{p_{i}}$$

where q_i (p_i) is the probability of observing the ith event according to the distribution Q (resp., P), and the summation is taken over all events in the sample space (e.g., all k-mers). In some sense, this is a measure of the dissimilarity between the distributions: if $p_i \approx q_i$ everywhere, their log ratios will be near zero and H will be small; as q_i and p_i diverge, their log ratios will deviate from zero and H will increase.

Fancy name, simple idea: H(Q||P) is just the expected per-sample contribution to log-likelihood ratio test for "was X sampled from H_0 : P vs H_1 : Q?"

So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000:1 odds, one should choose m to be inversely proportional to H(Q||P):

$$mH(Q||P) \ge \ln 1000$$
$$m \ge \frac{\ln 1000}{H(Q||P)}$$

Continuing the notation above, suppose P as an unknown distribution with parameters p_1, \ldots, p_r , $\sum p_i = 1$ where r is the number of points in the sample space (e.g. $r = 4^k$ in the case of k-mers). Given a random sample X_1, X_2, \ldots, X_r of size $n = \sum_i X_i$ from P, it is well known that the maximum likelihood estimators for the parameters are $q_i = \frac{X_i}{n} \approx p_i$. How good an estimate for P is this distribution Q? The estimators are unbiased:

$$E[q_i] = E\left[\frac{X_i}{n}\right] = \frac{E[X_i]}{n} = \frac{np_i}{n} = p_i$$

and the standard deviation of each estimate is proportional to $1/\sqrt{n}$, so these estimates are increasingly accurate as the sample size increases. A more quantitative assessment of the accuracy of the estimator is obtained by evaluating the KL divergence:

$$H(Q||P) = \sum_{i=1}^{r} q_i \ln \frac{q_i}{p_i} = \sum_{i=1}^{r} q_i \ln \left(1 + \frac{q_i - p_i}{p_i}\right)$$

Using the first two terms of the Taylor series for ln(1 + x), this is

$$H(Q||P) \approx \sum_{i=1}^{r} q_i \left(\frac{q_i - p_i}{p_i} - \frac{1}{2} \left(\frac{q_i - p_i}{p_i} \right)^2 \right)$$
$$= \sum_{i=1}^{r} q_i \frac{q_i - p_i}{p_i} - \frac{q_i}{2p_i} \frac{(q_i - p_i)^2}{p_i}$$

Since $\sum_{i=1}^{r} q_i = \sum_{i=1}^{r} p_i = 1$, $\sum_{i=1}^{r} p_i \frac{q_i - p_i}{p_i} = 0$, so

$$H(Q||P) \approx \sum_{i=1}^{r} q_{i} \frac{q_{i} - p_{i}}{p_{i}} - p_{i} \frac{q_{i} - p_{i}}{p_{i}} - \frac{q_{i}}{2p_{i}} \frac{(q_{i} - p_{i})^{2}}{p_{i}}$$

$$= \sum_{i=1}^{r} \frac{(q_{i} - p_{i})^{2}}{p_{i}} \left(1 - \frac{q_{i}}{2p_{i}}\right)$$

$$\approx \frac{1}{2} \sum_{i=1}^{r} \frac{(q_{i} - p_{i})^{2}}{p_{i}}$$

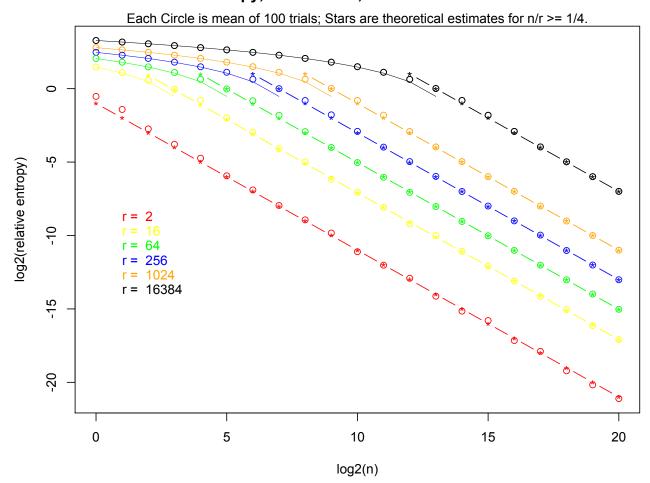
since $q_i \approx p_i$. Multiplying by n^2/n^2 we have,

$$H(Q||P) \approx \frac{1}{2n} \sum_{i=1}^{r} \frac{(nq_i - np_i)^2}{np_i}$$
$$= \frac{1}{2n} \sum_{i=1}^{r} \frac{(X_i - E[X_i])^2}{E[X_i]}$$

The summation is the test statistic for the χ^2 goodness-of-fit test for a multinomial distribution, and as $n \to \infty$ is known to follow a χ^2 distribution with r-1 degrees of freedom. Finally, the expected value of such a random variable is r-1, hence the expected KL divergence of the MLE inferred distribution Q with respect to the true distribution P is

$$E[H(Q||P)] = \frac{r-1}{2n} \tag{1}$$

Relative Entropy, wrt Uniform, of Observed n balls in r bins



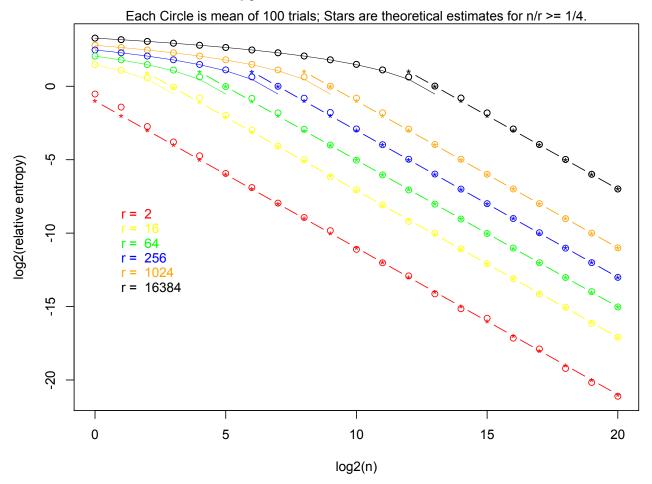
... and after a modicum of algebra:

$$E[H(Q||P)] \approx \frac{r-1}{2n} \longleftarrow$$

... which empirically is a good approximation:

LLR of error rises with number of parameters r, declines with size of training set n

Relative Entropy, wrt Uniform, of Observed n balls in r bins



... while accuracy and runtime rise with *n* (empirically)

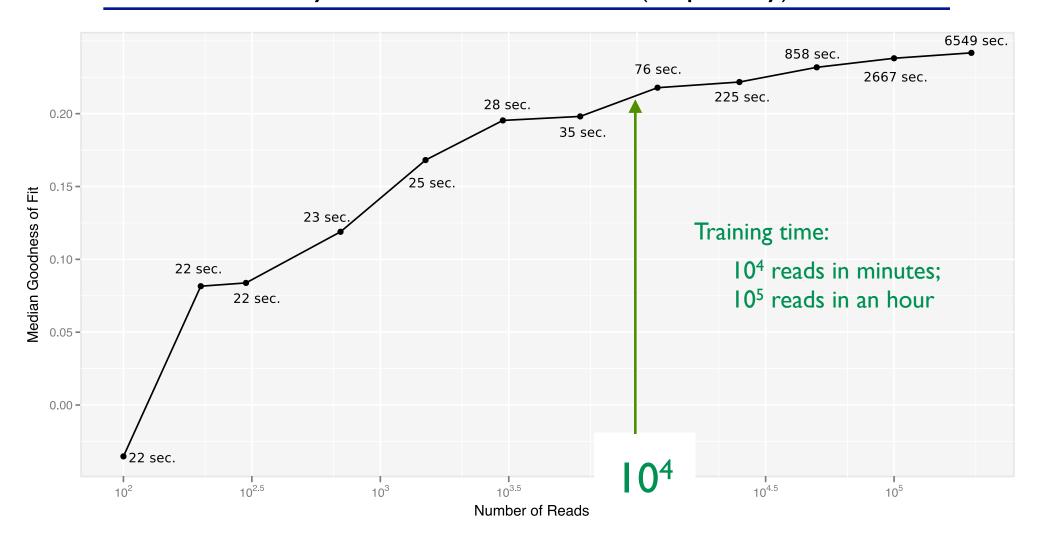
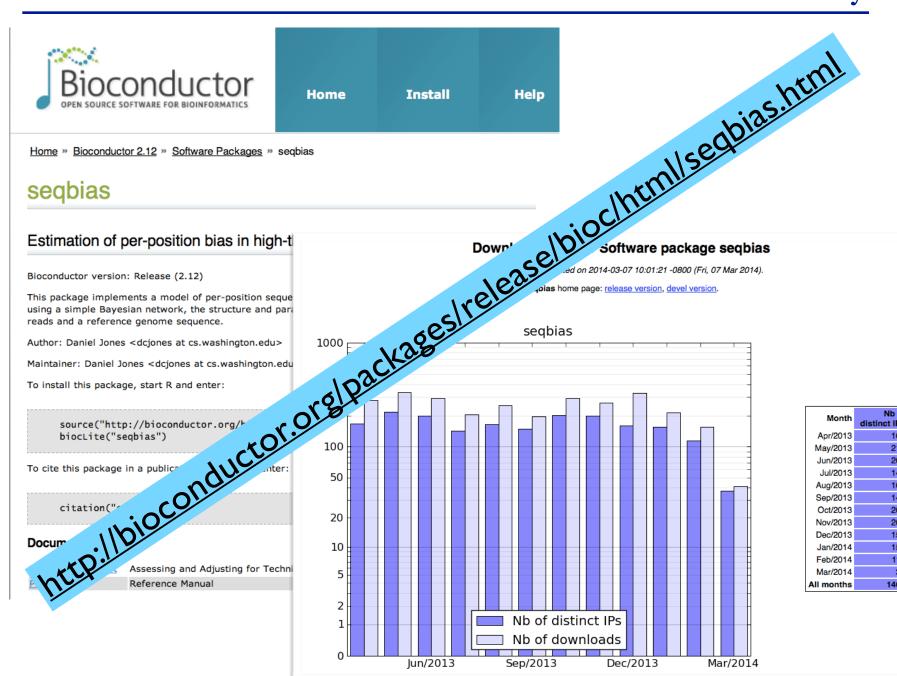


Figure 8: Median R^2 is plotted against training set size. Each point is additionally labeled with the run time of the training procedure.

Availability



Month	Nb of distinct IPs	Nb of downloads
Apr/2013	167	280
May/2013	217	333
Jun/2013	200	293
Jul/2013	142	205
Aug/2013	165	249
Sep/2013	148	196
Oct/2013	203	292
Nov/2013	200	267
Dec/2013	159	328
Jan/2014	156	215
Feb/2014	115	156
Mar/2014	37	41
All months	1460	2855

Acknowledgements

Daniel Jones

Katze Lab

Michael Katze

Xinxia Peng

P01 Labs

Tony Blau, Chuck Murry, Hannele Ruohola-Baker, Nathan Palpant, Kavitha Kuppusamy, ...

Funding NIGMS, NHGR, NIAID

CSEP 590 B Computational Biology

Course Wrap Up

What is DNA? RNA?

How many Amino Acids are there?

Did human beings, as we know them, develop from earlier species of animals?

What are stem cells?

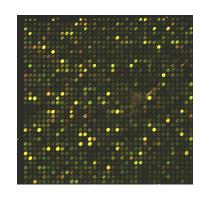
What did Viterbi invent?

What is dynamic programming?

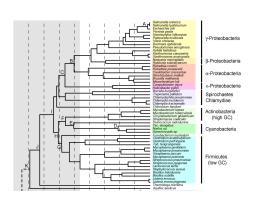
What is a likelihood ratio test?

What is the EM algorithm?

How would you find the maximum of $f(x) = ax^3 + bx^2 + cx + d$ in the interval -10<x<25?



"High-Throughput BioTech"



Sensors

DNA sequencing

Microarrays/Gene expression

Mass Spectrometry/Proteomics

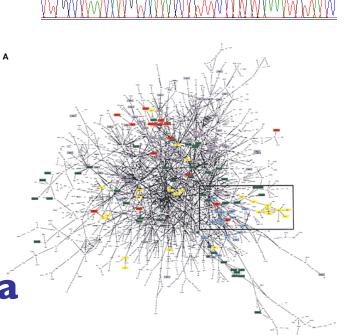
Protein/protein & DNA/protein interaction

Controls

Cloning

Gene editing/knock out/knock in

RNAi



"Grand Challenge" problems

CS Points of Contact

Scientific visualization

Gene expression patterns

Databases

Integration of disparate, overlapping data sources

Distributed genome annotation in face of shifting underlying coordinates

AI/NLP/Text Mining

Information extraction from journal texts with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models,...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec, ...)

Algorithms

. . .

Frontiers & Opportunities

New data:

Proteomics, SNP, arrays, CGH, comparative sequence information, epigenomics, chromatin structure, ncRNA, interactome, single-cell everything

New methods:

graphical models, rigorous filtering

Data integration

many, complex, noisy sources

Systems Biology

Frontiers & Opportunities

Open Problems:

```
splicing, alternative splicing
multiple sequence alignment (genome scale, w/ RNA etc.)
protein & RNA structure
interaction modeling
regulation, at all levels
network models
RNA trafficing
ncRNA discovery
```

Exciting Times

"Biology is to 21st Century as Physics was to 20th"

Lots to do
Highly multidisciplinary
You'll be hearing a lot more about it
I hope I've given you a taste of it

Thanks!

PS: Please complete online course evaluation before 12/7