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Control Cells Test Cells

o @

Isolate RNA * ‘

YRV
: 2 : 2

\ 4

map to genome, analyze



Goals of RNAseq

#1: Which genes are being expressed?

How? assemble reads (fragments of mRNAS) into
(nearly) full-length mRNAs and/or map them to a
reference genome

#2: How highly expressed are they?

How? count how many fragments come from each
gene—expect more highly expressed genes to yield
more reads, after correcting for biases like mRNA

length
#3: What’s same/diff between 2 samples
E.g., tumor/normal

#4: ...
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RNAseqg Data Analysis

De novo Assembly
mostly deBruijn-based, but likely to change with longer reads

more complex than genome assembly due to alt splicing,
wide diffs in expression levels; e.g. often multiple “k’s” used

pro: no ref needed (non-model orgs), novel discoveries
possible, e.g. very short exons

con: less sensitive to weakly-expressed genes

Reference-based (more later)
pro/con: basically the reverse

Both: subsequent bias correction, quantitation,
differential expression calls, fusion detection, etc.



BWA

gu—

“TopHat” (Ref based example)

map reads to ref transcriptome (optional)
map reads to ref genome

unmapped reads remapped as 25mers
novel splices = 25mers anchored 2 sides
stitch original reads across these

Roughly: 10m reads/hr, 4Gbytes
(typical data set 100m—1b reads)



RNAseq Example
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RNAseq protocol (approx)

Extract RNA (maybe by polyA < polyT)
Reverse-transcribe into DNA (“cDNA”)

Make double-stranded, maybe amplify

Cut into, say, ~300bp fragments

Add adaptors to each end

Sequence ~100-175bp from one or both ends

CAUTIONS: non-uniform sampling, sequence
(e.g. G+C), 5’-3’, and length biases
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RNA seq
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WWhat we expect:

Uniform Sampling
100 -
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Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 £ 4.7 per position, min = 9, max =33
l.e., as expected, we see = U £ 30 in 200 samples
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What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are > +100 above mean
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What we get: highly non-uniform coverage
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The Good News: we can (partially) correct the bias
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and platform/sample-dependent

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.



o

~ Log10 Bias ~—

1.0 -
0.5 -
0.0 -
-0.5 -
-1.0 -

o

400 -
300 -
200 -
100 -

0 .
400 -
300 -
200 -
100 -

0 -

Counts

Adjusted Unadjusted
Counts

Apoa2 >—>—r—>—>—>—>—>—]

I
chr1 173,156,174 173,156,274 173,156,374 173,156,474

(@) sample foreground sequences

| —
| —
——

e * ATCTAACTCTCCCTTGAGGGCCTAGT CCATAARAT @ ¢« ¢

T

(b) sample background sequences

c * ATCTAARGT CTCCCTTGAGGGECCTAGT CCATAAAT « ¢« ¢

T
(c) train Bayesian network
— I
predict bias

e

adjust read counts

lrmud.ul,u,.lamm'.LUuLA
e —

R2=0.38




Modeling Sequence Bias

Want a probability distribution over k-mers, k = 40
Some obvious choices

Full joint distribution: 4%-1 parameters

PWM (0-th order Markov): (4-1)*k parameters
Something intermediate

Directed Bayes network



Form of the models:

Directed Bayes nets

One “node” per nucleotide,
+20 bp of read start
‘Filled node means that
position is biased
*Arrow i = j means letter at
position i modifies bias at j
*For both, numeric
parameters say how much

Wetterbom
(282 parameters)



)

NB:

» O *Not just initial
’«OO hexamer
®
? é) *Span = 19
—_ =0 *All include
(a8 <O .
<C 2Ye) neggt.lve
° % positions
‘o o, All different,
. \ even on same
00 oo 00 0O |
“61\09 ?Z o 2 1\6‘[\09 % o 2 P atform
Wetterbom Katze
(282 parameters) (684 parameters)
«
=
=
=

Bullard
(696 parameters)

Trapnell
(360 parameters)

Mortazavi
(582 parameters)



Formally...

A reasonable definition of unbiasedness:

Pr(read at i) = Pr(read at i|sequence at i)
From Bayes...

Pr(sequence at i|read at i) Pr(read at i)

Pr(read at i|sequence at i) = Pr( 6 1)
r(sequence a

So we might define bias as

Pr(sequence at i|read at 1)

bias at position 1 = ,
. Pr(sequence at 1)



Conditional Log-
Likelihood

Find a graph that maximizes conditional log-likelihood.
n

CLL = ogPI‘(Xi|Si)
1—1
We need to penalize for model complexity as well.
mn

CLL’ = 2 YogPr(xi|si) — mlogn

1=1



Result — Increased Uniformity
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Result — Increased Uniformity
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“First, do no harm”

Theorem:

The probability of “false bias discovery,’ i.e.,

of learning a non-empty model from n reads
sampled from unbiased data is less than

| - (Pr(X < 3 log n))%

where h = number of nucleotides in the
model and X is a random variable that

(asymptotically in n) is y? with 3 degrees of
freedom. (E[X] = 3)



“First, do no harm”

Theorem: The probability of “false bias discovery,” i.e., of

learning a non-empty model from n reads sampled from
unbiased data, declines exponentially with n.

107 =
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A

Prob(non-empty model | unbiased data)

If > 10,000 reads are used, the probability
of a non-empty model < 0.0004
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how different are two distributions?

Given: r-sided die, with probs pi...pr of each face. Roll it n=10,000 times; observed
frequencies = qy, ..., gr, (the MLEs for the unknown gi’s). How close is p; to gi!

Kullback-Leibler divergence, also known as relative entropy, of Q with respect to P is defined as
Ql | P Z qgi lIl

where g; (p;) is the probability of observing the i event according to the distribution Q (resp.,
P), and the summation is taken over all events in the sample space (e.g., all k-mers). In some

sense, this is a measure of the dissimilarity between the distributions: if p; ~ g; everywhere,
their log ratios will be near zero and H will be small; as g; and p; diverge, their log ratios will

deviate from zero and H will increase.

Fancy name, simple idea: H(Q)]||P) is just the expected per-sample contribution to
log-likelihood ratio test for “was X sampled from Ho: P vs H: Q?”

So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000 : 1
odds, one should choose m to be inversely proportional to H(Q||P):

mH(Q||P) > In1000

. In1000
~ HQIIP)

20



Continuing the notation above, suppose P as an unknown distribution with parameters p1, . . ., p,

>~ pi = 1 where r is the number of points in the sample space (e.g. r = 4 in the case of k-
mers). Given a random sample X7, Xa, ..., X, of size n = ), X; from P, it is well known that
the maximum likelihood estimators for the parameters are g; = % ~ p;. How good an estimate
for P is this distribution Q? The estimators are unbiased:

Xi

E[q/]:EIFI = = =p,

and the standard deviation of each estimate is proportional to 1/+/n, so these estimates are in-
creasingly accurate as the sample size increases. A more quantitative assessment of the accuracy
of the estimator is obtained by evaluating the KL divergence:

gi — Pi
H(QIIP) = Zq,ln ~Yan (”T)

21



Using the first two terms of the Taylor series for In(1 + x), this is
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The summation is the test statistic for the x? goodness-of-fit test for a multinomial distribution,
and as n — oo is known to follow a x? distribution with r — 1 degrees of freedom. Finally, the
expected value of such a random variable is r — 1, hence the expected KL divergence of the MLE

inferred distribution @ with respect to the true distribution P is

r—1
2n

E[H(QIIP)] =

Relative Entropy, wrt Uniform, of Observed n balls in r bins

Each Circle is mean of 100 trials; Stars are theoretical estimates for n/r >= 1/4.
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... and after a modicum of algebra:

EIHQIIP)]) = -

... which empirically is a good approximation:

log2(relative entropy)

-10

-15

-20

Relative Entropy, wrt Uniform, of Observed n balls in r bins

Each Circle is mean of 100 trials; Stars are theoretical estimates for n/r >= 1/4.
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Median Goodness of Fit

... while accuracy and runtime rise with n (empirically)
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Figure 8: Median R? is plotted against training set size. Each point is additionally labeled with

the run time of the training procedure.



Availability

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 2.12 » Software Packages » segbias

segbias

Estimation of per-position bias in high-t

Bioconductor version: Release (2.12)

This package implements a model of per-position seque
using a simple Bayesian network, the structure and par:
reads and a reference genome sequence.

Author: Daniel Jones <dcjones at cs.washington.edu>
Maintainer: Daniel Jones <dcjones at cs.washington.edu

To install this package, start R and enter:

source("http://bioconductor.org/*
biocLite("segbias")

citation("~

W

. Assessing and Adjusting for Techni
Reference Manual

Install

T T T T T

[ Nb of distinct IPs

[

Apr/2013 [IIIIINTE7
May/2013 [N217
Jun/2013 200
Jui2013 A2
Aug/2013 [IIIIITHES
Sep/2013 [IINN48
Oct/2013 [IIIIINE03

Nov/2013 [IINE060

Dec/2013 458

Jan/2014 [IN56

Feb/2014 TS

Mar/2014 [NE7
All months _

1 Lo
1 Nb of downloads
0 Jun/2013 Sep/2013 Dec/2013 Mar/2014
L ee—

Nb of
downloads

280
333
293
205
249
196
292
267
328
215
156
41
2855
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Course Wrap Up



What is DNA? RNA?
How many Amino Acids are there?

Did human beings, as we know them, develop
from earlier species of animals?

What are stem cells?

What did Viterbi invent?

What is dynamic programming?
What is a likelihood ratio test?
What is the EM algorithm?

How would you find the maximum of f(x) = ax3 +
bx? + cx +d in the interval -10<x<257?
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CS Points of Contact

Scientific visualization
Gene expression patterns

Databases

Integration of disparate, overlapping data sources
Distributed genome annotation in face of shifting underlying coordinates

Al/NLP/Text Mining

Information extraction from journal texts with inconsistent
nomenclature, indirect interactions, incomplete/inaccurate models,...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous data
(DNA sequence, gene expression, protein interaction, mass spec, ...)

Algorithms



Frontiers & Opportunities

New data:

Proteomics, SNP, arrays, CGH, comparative
sequence information, epigenomics, chromatin
structure, ncRNA, interactome, single-cell everything

New methods:
graphical models, rigorous filtering
Data integration

many, complex, noisy sources

Systems Biology



Frontiers & Opportunities

Open Problems:
splicing, alternative splicing
multiple sequence alignment (genome scale, w/ RNA etc.)
protein & RNA structure
interaction modeling
regulation, at all levels
network models
RNA trafficing

ncRNA discovery



Exciting Times

“Biology is to 215t Century
as Physics was to 20"

Lots to do
Highly multidisciplinary
You'll be hearing a lot more about it

| hope I've given you a taste of it



Thanks!

PS: Please complete online course
evaluation before 12/7



