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ROC Curves
Viewing 2-parameter trade-offs (true/false positives)
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Speculation/EC

Long ORFs overlapped by many short ORFs 
in the 2 other reading frames

So (excluding stop codons), most data 
training the plus model is also used (twice) 
to train the minus model

Long ORFs on other strand also feed minus 
model (in triplicate)

Is there a better way?
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RNA Search and ���
Motif Discovery

CSEP 590 B���
Computational Biology
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Previous Lecture

 ���
  Many biologically interesting roles for RNA
  RNA secondary structure prediction
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Approaches to Structure 
Prediction

Maximum Pairing���
+ works on single sequences���
+ simple���
-  too inaccurate

Minimum Energy���
+ works on single sequences���
-  ignores pseudoknots ���
-  only finds “optimal” fold

Partition Function���
+ finds all folds���
-  ignores pseudoknots
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“Optimal pairing of ri ... rj”���
 Two possibilities

j Unpaired: ���
  Find best pairing of ri ... rj-1

j Paired (with some k): ���
  Find best ri ... rk-1 + ���
  best rk+1 ... rj-1 plus 1

Why is it slow? ���
Why do pseudoknots matter?
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Nussinov: ���
A Computation Order

B(i,j) = # pairs in optimal pairing of ri ... rj

B(i,j) = 0 for all i, j with i ≥ j-4; otherwise

B(i,j) = max of:

B(i,j-1)

max { B(i,k-1)+1+B(k+1,j-1) | ���
  i ≤ k < j-4 and rk-rj may pair} Time: O(n3) 

K=2 
3 

4 
5 

Or energy 

Loop-based energy version is better; recurrences similar, slightly messier 
10 



Today

Structure prediction via comparative analysis
Covariance Models (CMs) represent  ���
    RNA sequence/structure motifs
Fast CM search
Motif Discovery

Applications in prokaryotes & vertebrates

11 



Approaches, II

Comparative sequence analysis���
+ handles all pairings (potentially incl. pseudoknots) ���
-  requires several (many?) aligned, ���
   appropriately diverged sequences

Stochastic Context-free Grammars���
Roughly combines min energy & comparative, but 
no pseudoknots

Physical experiments (x-ray crystalography, NMR)

To
da
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13 Covariation is strong evidence for base pairing 
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Mutual Information

Max when no seq conservation but perfect pairing

MI = expected score gain from using a pair state (below)

Finding optimal MI, (i.e. opt pairing of cols) is hard(?)

Finding optimal MI without pseudoknots can be done by 
dynamic programming

€ 

Mij = fxi,xjxi,xj∑ log2
fxi,xj
f xi f xj

; 0 ≤ Mij ≤ 2
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* 1 2 3 4 5 6 7 8 9 * MI: 1 2 3 4 5 6 7 8 9 i,j: 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,4 3,5 3,6 3,7 3,8 3,9 4,5 4,6 4,7 4,8 4,9 5,6 5,7 5,8 5,9 6,7 6,8 6,9 7,8
A G A U A A U C U 9 0 0 0 0 0 0 0 0 AG AA AU AA AA AU AC AU GA GU GA GA GU GC GU AU AA AA AU AC AU UA UA UU UC UU AA AU AC AU AU AC AU UC
A G A U C A U C U 8 0 0 0 0 0 0 0 AG AA AU AC AA AU AC AU GA GU GC GA GU GC GU AU AC AA AU AC AU UC UA UU UC UU CA CU CC CU AU AC AU UC
A G A C G U U C U 7 0 0 2 0.30 0 1 AG AA AC AG AU AU AC AU GA GC GG GU GU GC GU AC AG AU AU AC AU CG CU CU CC CU GU GU GC GU UU UC UU UC
A G A U U U U C U 6 0 0 1 0.55 1 AG AA AU AU AU AU AC AU GA GU GU GU GU GC GU AU AU AU AU AC AU UU UU UU UC UU UU UU UC UU UU UC UU UC
A G C C A G G C U 5 0 0 0 0.42 AG AC AC AA AG AG AC AU GC GC GA GG GG GC GU CC CA CG CG CC CU CA CG CG CC CU AG AG AC AU GG GC GU GC
A G C G C G G C U 4 0 0 0.30 AG AC AG AC AG AG AC AU GC GG GC GG GG GC GU CG CC CG CG CC CU GC GG GG GC GU CG CG CC CU GG GC GU GC
A G C U G C G C U 3 0 0 AG AC AU AG AC AG AC AU GC GU GG GC GG GC GU CU CG CC CG CC CU UG UC UG UC UU GC GG GC GU CG CC CU GC
A G C A U C G C U 2 0 AG AC AA AU AC AG AC AU GC GA GU GC GG GC GU CA CU CC CG CC CU AU AC AG AC AU UC UG UC UU CG CC CU GC
A G G U A G C C U 1 AG AG AU AA AG AC AC AU GG GU GA GG GC GC GU GU GA GG GC GC GU UA UG UC UC UU AG AC AC AU GC GC GU CC
A G G G C G C C U AG AG AG AC AG AC AC AU GG GG GC GG GC GC GU GG GC GG GC GC GU GC GG GC GC GU CG CC CC CU GC GC GU CC
A G G U G U C C U AG AG AU AG AU AC AC AU GG GU GG GU GC GC GU GU GG GU GC GC GU UG UU UC UC UU GU GC GC GU UC UC UU CC
A G G C U U C C U AG AG AC AU AU AC AC AU GG GC GU GU GC GC GU GC GU GU GC GC GU CU CU CC CC CU UU UC UC UU UC UC UU CC
A G U A A A A C U AG AU AA AA AA AA AC AU GU GA GA GA GA GC GU UA UA UA UA UC UU AA AA AA AC AU AA AA AC AU AA AC AU AC
A G U C C A A C U AG AU AC AC AA AA AC AU GU GC GC GA GA GC GU UC UC UA UA UC UU CC CA CA CC CU CA CA CC CU AA AC AU AC
A G U U G C A C U AG AU AU AG AC AA AC AU GU GU GG GC GA GC GU UU UG UC UA UC UU UG UC UA UC UU GC GA GC GU CA CC CU AC
A G U U U C A C U AG AU AU AU AC AA AC AU GU GU GU GC GA GC GU UU UU UC UA UC UU UU UC UA UC UU UC UA UC UU CA CC CU AC

MI: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 1.0 2.0 0.0 0.0 0.4 0.5 0.3 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
fxi,xj:

A 16 0 4 2 4 4 4 0 0 AA 0 4 2 4 4 4 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 1 1 1 0 0 2 1 0 0 2 0 0 0
C 0 0 4 4 4 4 4 16 0 AC 0 4 4 4 4 4 16 0 0 0 0 0 0 0 0 1 1 0 0 4 0 0 1 0 2 0 0 1 4 0 0 4 0 4
G 0 16 4 2 4 4 4 0 0 AG 16 4 2 4 4 4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 0 0
U 0 0 4 8 4 4 4 0 16 AU 0 4 8 4 4 4 0 16 0 0 0 0 0 0 0 3 1 2 4 0 4 1 0 0 0 2 0 1 0 4 2 0 4 0

CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 2 1 0 0 2 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 4 0 1 0 1 4 0 0 1 4 0 0 4 0 4
CG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 0 0 1 1 1 0 0 2 1 0 0 2 0 0 0
CU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 1 2 1 0 4 0 1 0 4 0 0 4 0
GA 0 0 0 0 0 0 0 0 4 2 4 4 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
GC 0 0 0 0 0 0 0 0 4 4 4 4 4 16 0 1 1 0 4 4 0 2 0 1 2 0 2 1 4 0 2 4 0 4
GG 0 0 0 0 0 0 0 0 4 2 4 4 4 0 0 1 1 2 0 0 0 0 2 1 0 0 0 1 0 0 2 0 0 0
GU 0 0 0 0 0 0 0 0 4 8 4 4 4 0 16 2 1 2 0 0 4 0 0 0 0 2 2 1 0 4 0 0 4 0
UA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 0 0 2 2 2 0 0 0 1 0 0 0 0 0 0
UC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 4 0 1 3 2 8 0 2 1 4 0 2 4 0 4
UG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 1 1 0 0 0 1 0 0 0 0 0 0
UU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 4 2 2 3 0 8 2 1 0 4 2 0 4 0

N= 9 log dealy:
AA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.1 0.06 0 0 0.1 0 0 0 0.13 0 0 0
AC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0
AG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0.1 0 0 0 0 0 0 0
AU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.5 0 0 0.1 0 0 0 0 0 0 0 0 0.13 0 0 0
CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.13 0 0 0
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.5 0 0 0 0 0 0 0 0.1 0 0 0 0.13 0 0 0
CU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0
GA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0.3 0 0.06 0 0 0.1 0 0 0 0.13 0 0 0
GG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0 0 0 0 0.3 0.06 0 0 0 0 0 0 0.13 0 0 0
GU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0
UA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 -0.1 0.1 0 0 0 0.1 0 0 0 0.13 0 0 0
UG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 -0.1 -0.1 0 0 0 0 0 0 0 0 0 0
UU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0.1 0 0 0 0.13 0 0 0

M.I. Example (Artificial)

Cols 1 & 9, 2 & 8: perfect conservation & might be 
base-paired, but unclear whether they are.  M.I. = 0 

Cols 3 & 7: No conservation, but always W-C pairs, 
so seems likely they do base-pair.  M.I. = 2 bits. 

Cols 7->6: unconserved, but each letter in 7 has 
only 2 possible mates in 6.  M.I. = 1 bit.
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Find best (max total MI) subset of column pairs 
among i…j, subject to absence of pseudo-knots���

 

“Just like Nussinov/Zucker folding”

BUT, need enough data---enough sequences at right 
phylogenetic distance

MI-Based Structure-Learning���

€ 

Si, j =max
Si, j−1
maxi≤k< j−4 Si,k−1 + Mk, j + Sk+1, j−1

$ 
% 
& 

18 

j  unpaired 

 j paired 



Computational Problems

How to predict secondary structure
How to model an RNA “motif” ���

(I.e., sequence/structure pattern)
Given a motif, how to search for instances
Given (unaligned) sequences, find motifs

How to score discovered motifs
How to leverage prior knowledge

19 



Motif Description

20 



RNA Motif Models

“Covariance Models” (Eddy & Durbin 1994)
aka profile stochastic context-free grammars
aka hidden Markov models on steroids

Model position-specific nucleotide 
preferences and base-pair preferences

Pro: accurate
Con: model building hard, search slow

21 



Eddy & Durbin 1994: What

A probabilistic model for RNA families
The “Covariance Model”
≈ A Stochastic Context-Free Grammar
A generalization of a profile HMM

Algorithms for Training
From aligned or unaligned sequences
Automates “comparative analysis”
Complements Nusinov/Zucker RNA folding

Algorithms for searching

22 



Main Results

Very accurate search for tRNA
(Precursor to tRNAscanSE - current favorite)

Given sufficient data, model construction 
comparable to, but not quite as good as, ���
human experts
Some quantitative info on importance of 
pseudoknots and other tertiary features

23 



Probabilistic Model Search

As with HMMs, given a sequence, you calculate 
likelihood ratio that the model could generate the 
sequence, vs a background model
You set a score threshold
Anything above threshold → a “hit”
Scoring:

“Forward” / “Inside” algorithm - sum over all paths
Viterbi approximation - find single best path���
(Bonus: alignment & structure prediction)

24 



Example: 
searching for 
tRNAs���

25 



Mj: Match states (20 emission probabilities)
Ij: Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)

Profile Hmm Structure

26 



Conceptually, start with a profile HMM:
from a multiple alignment, estimate nucleotide/ insert/delete 
preferences for each position
given a new seq, estimate likelihood that it could be generated by 
the model, & align it to the model

27 

How to model an RNA “Motif”?

all G mostly G del ins 
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How to model an RNA “Motif”?

Add “column pairs” and pair emission probabilities 
for base-paired regions

paired columns <<<<<<<                         >>>>>>> 
   …                               … 



Mj: Match states (20 emission probabilities)
Ij: Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)

Profile Hmm Structure

29 
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CM Structure

A: Sequence + structure

B: the CM “guide tree”

C: probabilities of 
letters/ pairs & of indels

Think of each branch 
being an HMM emitting 
both sides of a helix (but 
3’ side emitted in 
reverse order)



Overall CM 
Architecture
One box (“node”) per node 
of guide tree
BEG/MATL/INS/DEL just 
like an HMM

MATP & BIF are the key 
additions: MATP emits pairs 
of symbols, modeling base-
pairs; BIF allows multiple 
helices

31 



CM Viterbi Alignment���
(the “inside” algorithm)

€ 

€ 

xi = ith letter of input
xij = substring i,..., j of input
Tyz = P(transition y→ z)

Exi ,x j
y = P(emission of xi,x j from state y)

Sij
y =maxπ logP(xij gen'd starting in state y via path π )

32 



CM Viterbi Alignment���
(the “inside” algorithm)

€ 

33 
€ 

Sij
y =maxπ logP(xij generated starting in state y via path π )

Sij
y =

maxz[Si+1, j−1
z + logTyz + logExi ,x j

y ] match pair
maxz[Si+1, j

z + logTyz + logExi
y ] match/insert left

maxz[Si, j−1
z + logTyz + logEx j

y ] match/insert right
maxz[Si, j

z + logTyz] delete
maxi<k≤ j[Si,k

yleft + Sk+1, j
yright ] bifurcation

% 

& 

' 
' ' 

( 

' 
' 
' 

Time O(qn3), q states, seq len n 
compare: O(qn) for profile HMM 



Primary vs Secondary Info

34 

disallowing / allowing 
pseudoknots  

maxjMi,ji=1

n
∑( ) / 2



Model Training���

35 



Comparison to TRNASCAN

Fichant & Burks - best heuristic then
97.5% true positive
0.37 false positives per MB

CM A1415 (trained on trusted alignment)
> 99.98% true positives
< 0.2 false positives per MB

Current method-of-choice is “tRNAscanSE”, a CM-
based scan with heuristic pre-filtering (including 
TRNASCAN?) for performance reasons.  
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tRNAScanSE

Uses 3 older heuristic tRNA finders as 
prefilter

Uses CM built as described for final scoring
Actually 3(?) different CMs

eukaryotic nuclear
prokaryotic

organellar 
Used in “all” genome annotation projects

37 



An Important Application: ���
Rfam

38 



Rfam – an RNA family DB���
Griffiths-Jones, et al., NAR ’03, ’05, ’08, ’11, ’12

Was biggest scientific comp user in Europe - 1000 
cpu cluster for a month per release

Rapidly growing:
Rel   1.0, 1/03:    25 families,     55k instances
Rel   7.0, 3/05:   503 families,  363k instances
Rel   9.0, 7/08:   603 families,  636k instances
Rel   9.1, 1/09: 1372 families, 1148k instances
Rel 10.0, 1/10: 1446 families, 3193k instances
Rel 11.0, 8/12: 2208 families, 6125k instances
Rel 12.0, 9/14: 2450 families, 19623k instances

39 

DB size: 

~8GB 
 
 
 
 

~160GB 
~320GB 



RF00037: ���
Example Rfam Family
Input (hand-curated):

MSA “seed alignment”

SS_cons
Score Thresh T

Window Len W

Output:
CM
scan results & “full 
alignment”

phylogeny, etc.
40 

IRE (partial seed alignment):
 
Hom.sap.  GUUCCUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCUUC.UUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  UUUCCUGUUUCAACAGUGCUUGGA.GGAAC 
Hom.sap.  UUUAUC..AGUGACAGAGUUCACU.AUAAA 
Hom.sap.  UCUCUUGCUUCAACAGUGUUUGGAUGGAAC 
Hom.sap.  AUUAUC..GGGAACAGUGUUUCCC.AUAAU 

Hom.sap.  UCUUGC..UUCAACAGUGUUUGGACGGAAG 
Hom.sap.  UGUAUC..GGAGACAGUGAUCUCC.AUAUG 
Hom.sap.  AUUAUC..GGAAGCAGUGCCUUCC.AUAAU 
Cav.por.  UCUCCUGCUUCAACAGUGCUUGGACGGAGC 
Mus.mus.  UAUAUC..GGAGACAGUGAUCUCC.AUAUG 
Mus.mus.  UUUCCUGCUUCAACAGUGCUUGAACGGAAC 

Mus.mus.  GUACUUGCUUCAACAGUGUUUGAACGGAAC 
Rat.nor.  UAUAUC..GGAGACAGUGACCUCC.AUAUG 
Rat.nor.  UAUCUUGCUUCAACAGUGUUUGGACGGAAC 
SS_cons   <<<<<...<<<<<......>>>>>.>>>>> 



Rfam – key issues

Overly narrow families
Variant structures/unstructured RNAs
Spliced RNAs

RNA pseudogenes
Human ALU is SRP related w/ 1.1m copies

Mouse B2 repeat (350k copies) tRNA related

Speed & sensitivity

Motif discovery/hand-made models

41 



CM Summary

Covariance Models (CMs) represent 
conserved RNA sequence/structure motifs

They allow accurate search
But 

a) search is slow

b) model construction is laborious

42 



An Important Need: ���
Faster Search

43 



Homology search

“Homolog” – similar by descent from common ancestor
Sequence-based

Smith-Waterman

FASTA

BLAST

For RNA, sharp decline in sensitivity at ~60-70% identity

So, use structure, too

44 



Impact of RNA homology search

B. subtilis

L. innocua

A. tumefaciens

V. cholera

M. tuberculosis
(and 19 more species)

operon
glycine 
riboswitch

(Barrick, et al., 2004)
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Impact of RNA homology search

B. subtilis

L. innocua

A. tumefaciens

V. cholera

M. tuberculosis

(Barrick, et al., 2004)

(and 19 more species)

operon
glycine 
riboswitch

(and 42 more species)

(Mandal, et al., 2004)

BLAST-based                  CM-based 
46 



Faster Genome Annotation ���
of Non-coding RNAs ���

Without Loss of Accuracy
Zasha Weinberg 

& W.L. Ruzzo

Recomb ‘04, ISMB ‘04, Bioinfo ‘06

47 



RaveNnA: Genome Scale ���
RNA Search

Typically 100x speedup over raw CM, w/ no loss in accuracy: 
Drop structure from CM to create a (faster) HMM

Use that to pre-filter sequence; 
Discard parts where, provably, CM score < threshold;

Actually run CM on the rest (the promising parts)

Assignment of HMM transition/emission scores is key 
(a large convex optimization problem)

Weinberg & Ruzzo, Bioinformatics, 2004, 2006 
48 



CM’s are good, but slow ���

EMBL 

CM 

hits 
junk 

Rfam Goal 

1 month, 
1000 computers 

Our Work 

~2 months, 
1000 computers 

EMBL 

CM 

hits 

Ravenna 

Rfam Reality 

EMBL 

hits junk 

BLAST 

CM 

49 

10 years, 
1000 computers 



Covariance���
Model

Key difference of CM vs HMM: 
Pair states emit paired symbols,  
corresponding to base-paired  
nucleotides; 16 emission 
probabilities here. 

50 



Oversimplified CM���
(for pedagogical purposes only)

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 
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CM to HMM

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

A 
C 
G 
U 
 – 
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C 
G 
U 
 – 

CM HMM 

52 
25 emisions per state      5 emissions per state, 2x states 



Need: log Viterbi scores CM ≤ HMM

Key Issue: 25 scores → 10

P 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

L 

A 
C 
G 
U 
– 

A 
C 
G 
U 
 – 

R 

CM HMM 
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Viterbi/Forward Scoring

Path π defines transitions/emissions
Score(π) = product of “probabilities” on π
NB: ok if “probs” aren’t, e.g. ∑≠1���
(e.g. in CM, emissions are odds ratios vs ���
0th-order background)

For any nucleotide sequence x:
Viterbi-score(x) = max{ score(π) | π emits x}
Forward-score(x) = ∑{ score(π) | π emits x}

54 



Key Issue: 25 scores → 10

Need: log Viterbi scores CM ≤ HMM
PCA ≤ LC + RA 
PCC ≤ LC + RC 
PCG ≤ LC + RG 
PCU ≤ LC + RU 
PC–  ≤ LC + R– 

… 
… 
… 
… 
… 

PAA ≤ LA + RA 
PAC ≤ LA + RC 
PAG ≤ LA + RG 
PAU ≤ LA + RU 
PA–  ≤ LA + R– N

B
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R 

CM HMM 
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Rigorous Filtering

Any scores satisfying the linear inequalities 
give rigorous filtering���
���
Proof: ���
  CM Viterbi path score    ���
    ≤ “corresponding” HMM path score���
    ≤  Viterbi HMM path score ���
              (even if it does not correspond to any CM path)

PAA ≤ LA + RA 
PAC ≤ LA + RC 
PAG ≤ LA + RG 
PAU ≤ LA + RU 
PA–  ≤ LA + R– … 

56 



Some scores filter better

PUA = 1  ≤  LU + RA

PUG = 4  ≤  LU + RG

     Assuming ACGU ≈ 25%

Option 1: Opt 1:
    LU = RA = RG = 2    LU + (RA + RG)/2 = 4 

Option 2: Opt 2:
    LU = 0, RA = 1, RG = 4    LU + (RA + RG)/2 = 2.5
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Optimizing filtering

For any nucleotide sequence x:
Viterbi-score(x) = max{ score(π) | π emits x }
Forward-score(x) = ∑{ score(π) | π emits x }

Expected Forward Score
E(Li, Ri) = ∑all sequences x Forward-score(x)*Pr(x)
NB: E is a function of Li, Ri only

Optimization: ���
Minimize E(Li, Ri)  subject to score Lin.Ineq.s
This is heuristic (“forward↓ ⇒ Viterbi↓ ⇒ filter↓”)
But still rigorous because “subject to score Lin.Ineq.s”

Under 0th-order  
background model 
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Calculating E(Li, Ri)

E(Li, Ri) = ∑x Forward-score(x)*Pr(x)

Forward-like: for every state, calculate 
expected score for all paths ending there; 
easily calculated from expected scores of 
predecessors & transition/emission 
probabilities/scores
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Minimizing E(Li, Ri) ���
(subject to linear constraints)

Calculate E(Li, Ri) 
symbolically, in terms of 
emission scores, so we 
can do partial derivatives 
for numerical convex 
optimization algorithm

€ 

∂E (L1 , L2 , ...)
∂Li

Forward: 

Viterbi: 
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Assignment of scores/ “probabilities”

Convex optimization problem
Constraints: enforce rigorous property
Objective function: filter as aggressively as 
possible

Problem sizes: 
1000-10000 variables

10000-100000 inequality constraints



“Convex” Optimization

Convex: ���
local max = global max;

simple “hill climbing” works

Nonconvex: ���
can be many local maxima,    
≪ global max;���
“hill-climbing” fails
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Estimated Filtering Efficiency���
(139 Rfam 4.0 families)

Filtering 
fraction

# families 
(compact)

# families 
(expanded)

< 10-4 105 110

10-4 - 10-2 8 17

.01 - .10 11 3

.10 - .25 2 2

.25 - .99 6 4

.99 - 1.0 7 3

~100x 
speedup 

Averages 283 times faster than CM

≈ 
br

ea
k 

ev
en
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Results: new ncRNAs (?)

Name # Known
(BLAST + CM)

# New
(rigorous filter + CM)

Pyrococcus snoRNA 57 123

Iron response element 201 121

Histone 3’ element 1004 102*

Retron msr 11 48

Hammerhead I 167 26

Hammerhead III 251 13

U6 snRNA 1462 2

U7 snRNA 312 1

cobalamin riboswitch  170 7

13 other families 5-1107 0



Results: With additional work
# with 
BLAST+CM

# with rigorous 
filter series + CM

# new

Rfam tRNA 58609 63767 5158

Group II intron 5708 6039 331

tRNAscan-SE 
(human)

608 729 121

tmRNA 226 247 21

Lysine riboswitch 60 71 11

And more…
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Is there anything more to do?

Rigorous filters can be too cautious
E.g., 10 times slower than heuristic filters

Yet only 1-3% more sensitive

We want to
Run scans faster with minimal loss of sensitivity
Know empirically what sensitivity we’re losing
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Heuristic Filters

Rigorous filters optimized for worst case
Possible to trade improved speed for small 
loss in sensitivity?
Yes – profile HMMs as before, but optimized 
for average case
Often 10x faster, modest loss in sensitivity
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Heuristic Filters���
ROC-like curves ���

(lysine riboswitch)
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Heuristic Filters

cobalamine  
(B12) riboswitch tRNA SECIS 

* * 

* 

* rigorous HMM, not rigorous threshold 

69 



Software

Ravenna implements both rigorous and 
heuristic filters
Infernal (engine behind Rfam) implements 
heuristic filters and some other 
(important)accelerations

E,g., dynamic “banding” of dynamic programming 
matrix based on the insight that large deviations 
from consensus length must have low scores.
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CM Search Summary

Still slower than we might like, but dramatic 
speedup over raw CM is possible with:

No loss in sensitivity (provably), or

Even faster with modest (and estimable) loss in 
sensitivity
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Motif Discovery
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RNA Motif Discovery

CM’s are great, but where do they come from?
Key approach: comparative genomics

Search for motifs with common secondary structure in a 
set of functionally related sequences.

Challenges
Three related tasks

Locate the motif regions.
Align the motif instances.
Predict the consensus secondary structure.

Motif search space is huge!
Motif location space, alignment space, structure space.
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RNA Motif Discovery

Would be great if: given 100 complete 
genomes from diverse species, we could 
automatically find all the RNAs.

State of the art: that’s hopeless
Hope:  can we exploit biological knowledge 

to narrow the search space?
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RNA Motif Discovery

More promising problem: given a 10-20 
unaligned sequences of a few kb, most of 
which contain instances of one RNA motif 
of 100-200bp  -- find it.

Example: 5’ UTRs of orthologous glycine 
cleavage genes from γ-proteobacteria

Example: corresponding introns of 
orthogolous vertebrate genes

75 

Orthologs = 
counterparts in 
different species 
 



Approaches

Align-First: Align sequences, then look for 
common structure
Fold-First: Predict structures, then try to align 
them

Joint: Do both together
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“Align First” Approach: ���
Predict Struct from Multiple Alignment

… GA … UC …
… GA … UC …
… GA … UC …
… CA … UG …
… CC … GG …
… UA … UA …

Compensatory 
mutations reveal 
structure (core of 
“comparative 
sequence analysis”) 
but usual alignment 
algorithms penalize 
them (twice)
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Pitfall for sequence-alignment- 
first approach

Structural conservation ≠ Sequence conservation
Alignment without structure information is unreliable

CLUSTALW alignment of SECIS elements with flanking regions 

same-colored boxes should be aligned 
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Pfold (KH03)  Test Set D 

Trusted alignment 

ClustalW       
    Alignment 

Evolutionary Distance 
 Knudsen & Hein, Pfold: RNA secondary structure prediction using stochastic 

context-free grammars, Nucleic Acids Research, 2003, v 31,3423–3428 79 



Approaches

Align-first: align sequences, then look for 
common structure
Fold-first: Predict structures, then try to align 
them

single-seq struct prediction only ~ 60% accurate; 
exacerbated by flanking seq; no biologically-
validated model for structural alignment

Joint: Do both together
Sankoff – good but slow
Heuristic
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Our Approach: CMfinder���
RNA motifs from unaligned sequences

Simultaneous local alignment, folding and CM-based 
motif description via an EM-style learning procedure

Sequence conservation exploited, but not required
Robust to inclusion of unrelated and/or flanking sequence

Reasonably fast and scalable
Produces a probabilistic model of the motif that can be 
directly used for homolog search

Yao, Weinberg & Ruzzo, Bioinformatics, 2006 
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Alignment → CM → Alignment

Similar to HMM, but slower

Builds on Eddy & Durbin, ‘94

But new way to infer which columns to pair, 
via a principled combination of mutual 
information and predicted folding energy

And, it’s local, not global, alignment (harder)
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CMFinder
Simultaneous alignment, folding & motif description ���

Yao, Weinberg & Ruzzo, Bioinformatics, 2006

Folding  
predictions 

Smart  
heuristics 

Candidate 
alignment CM 

Realign 

EM 

Mutual 
Information 

Combines folding & mutual 
information in a principled way. 



Initial Alignment Heuristics

fold sequences separately
candidates: regions with low folding energy
compare candidates via “tree edit” algorithm
find best “central” candidates & align to them
BLAST anchors
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Structure Inference

Part of M-step is to pick a structure that maximizes 
data likelihood

We combine:
mutual information

position-specific priors for paired/unpaired���
    (based on single sequence thermodynamic folding predictions)

intuition: for similar seqs, little MI; fall back on single-
sequence folding predictions
data-dependent, so not strictly Bayesian
Details: see paper
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Li = column i; σ = (α, β) the 2ary struct, α = unpaired, β = paired cols 

With MLE params, Iij is the mutual information between cols i and j 
86 



Can find it via a simple dynamic programming alg. 87 
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CMfinder Accuracy���
(on Rfam families with flanking sequence)

/CW 
/CW 



CMfinder—A Covariance Model Based RNA Motif Finding Algorithm

Rfam for s2m is due to a small shift of a helix. For RFN, the motif
we produced is partial, and most prediction errors are local, and
in regions with great sequence conservation. CMfinder significantly
outperformed the other methods on families with low sequence con-
servation or short motifs such as the SECIS family. This is a difficult
test case due to low sequence similarity, and two conserved non-
canonical G-A pairs in the stem-loop. The other 4 methods tested
predict no base pairs, while CMfinder correctly aligns and annota-
tes the region enclosed by the two G-A pairs. RNAalifold, Pfold,
Carnac and ComRNA have relatively weak performance for such
families, presumbly because sequence conservation is insufficient to
delineate possible alignments. Inclusion of arbitrary flanking regi-
ons makes sequence-based alignment even harder. Although our
initial pairwise alignment algorithm is much simpler than pairwise
Foldalign, we gained more information by comparing all sequences.
We have also tested a set of methods that perform global alignments
on Rfam families without flanking regions. Again, CMfinder usually
outperforms other methods; see Supplement.
To quantify the effectiveness of each component of our algo-

rithm, we compared the performance of CMfinder with its four
variants: 1. heuristic initial alignment before EM iteration (Ini); 2.
initial alignment with EM iteration based on mutual information
only (Ini em mi); 3. initial alignment with EM iteration based on
folding energy only (Ini em fe); 4. ClustalW alignment with EM ite-
ration (Clustal em). To speed the EM iteration, we trimmed regions
with more than 10% gaps from both ends of the ClustalW alignment.
The motif prediction accuracy of the these 5 methods are shown

in Figure 1. First, we observe that the EM iteration improves the pre-
diction accuracy considerably, from an average of 66% in the initial
alignments to 83%. Second, the energy-based partition function
(Ini em fe) generally outperforms mutual information (Ini em mi)

Families
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3 15 12 9 6 10 4 18 8 7 2 16 13 14 17 19 1 11 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CMfinder
Ini
Ini_em_fe
Ini_em_mi  
Clustal_em

Fig. 1. Comparison of CMfi nder with its variants. The initial alignment
corresponding to the best output motif is selected for each family. For the
rightmost 6, fi nal CMfi nder motifs are combinations of multiple motifs,
precluding comparison to ini, ini em mi, and ini em fe.

in the EM algorithm, while using mutual information in addition
to folding energy yields improvements on SECIS and s2m. Third,
CMfinder has better performance than Clustal em except for RFN
and S box. For RFN, the CMfinder motif is only partial. Meanwhile,
CMfinder is far more effective at locating poorly conserved and/or
short motifs, such as IRE, and SECIS.
This suggests that our heuristics are generally more robust, but

ClustalW can be a complementary alternative for constructing initial
alignments. Finally, there is significant improvement of Clustal em
over Pfold and RNAalifold. All three are based on ClustalW ali-
gnment, yet Clustal em achieves 61% average prediction accuracy,
compared to 36% for Pfold and 27% for RNAalifold. On families
where both RNAalifold and Pfold fail, such as S box, Cobalamin
and Purine, Clustal em has 55% to 80% prediction accuracy. To
summarize, both the initial alignment procedure and the EMmodule
are effective components of CMfinder, which make it reliable on a
variety of datasets.

Table 1. Summary of Rfam test families and results. #seqs: the number sequences in each family’s seed alignment. (For ease of post processing, we only
chose one sequence per EMBL ID.) %id: average sequence identity among family members. length: average length of family members (nucleotides). #hp:
number of hairpin-loops in the consensus structure. Last 6 columns: accuracies; bold highlights the best result in each row. CW/Pfold: Pfold using ClustalW
alignment. CW/RNAalifold: similar. (X: Carnac terminated abnormally, presumably due to memory problems. -: Foldalign (pairwise) not tested due to the
heavy computation cost. RNAalifold, Carnac and ComRNA do not predict any consensus structure in many cases, so the corresponding accuracies are 0.)

ID Family Rfam ID #seqs %id length #hp CMfi nder CW/Pfold CW/RNAalifold Carnac Foldalign ComRNA
1 Cobalamin RF00174 71 49 216 4 0.59 0.05 0 X - 0
2 ctRNA pGA1 RF00236 17 74 83 2 0.91 0.70 0.72 0 0.86 0
3 Entero CRE RF00048 56 81 61 1 0.89 0.74 0.22 0 - 0
4 Entero OriR RF00041 35 77 73 2 0.94 0.75 0.76 0.80 0.52 0.52
5 glmS RF00234 14 58 188 4 0.83 0.12 0.18 0 - 0.13
6 Histone3 RF00032 63 77 26 1 1 0 0 0 - 0
7 Intron gpII RF00029 75 55 92 2 0.80 0.30 0 0 - 0
8 IRE RF00037 30 68 30 1 0.77 0.22 0 0 0.38 0
9 let-7 RF00027 9 69 84 1 0.87 0.08 0.42 0 0.71 0.78
10 lin-4 RF00052 9 69 72 1 0.78 0.51 0.75 0.41 0.65 0.24
11 Lysine RF00168 48 48 183 4 0.77 0.24 0 X - 0
12 mir-10 RF00104 11 66 75 1 0.66 0.59 0.60 0 0.48 0.33
13 Purine RF00167 29 55 103 2 0.91 0.07 0 0 - 0.27
14 RFN RF00050 47 66 139 4 0.39 0.68 0.26 0 - 0
15 Rhino CRE RF00220 12 71 86 1 0.88 0.52 0.52 0.69 0.41 0.61
16 s2m RF00164 23 80 43 1 0.67 0.80 0.45 0.64 0.63 0.29
17 S box RF00162 64 66 112 3 0.72 0.11 0 0 - 0
18 SECIS RF00031 43 43 68 1 0.73 0 0 0 - 0
19 Tymo tRNA-like RF00233 22 72 86 4 0.81 0.33 0.36 0.30 0.80 0.48

Average Accuracy: 0.79 0.36 0.28 0.17 0.60 0.19
Average Specifi city: 0.81 0.42 0.57 0.83 0.60 0.65
Average Sensitivity: 0.77 0.36 0.23 0.13 0.61 0.17

5
Min/Max in col      Bold = best in row      

Summary of Rfam test 
families and results 
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Discovery in Bacteria
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Predicting New cis-Regulatory RNA 
Elements

Goal: 
Given unaligned UTRs of coexpressed or orthologous 
genes, find common structural motifs

Difficulties: 
Low sequence similarity: alignment difficult
Varying flanking sequence 
Motif missing from some input genes

91 
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Use the Right Data;���
Do Genome Scale Search

Dataset 
collection Footprinter CMfinder Ravenna 

Search 



93 

Right Data: Why/How

We can recognize, say, 5-10 good examples amidst 
20 extraneous ones (but not 5 in 200 or 2000) of 
length 1k or 10k (but not 100k)
Regulators often near regulatees (protein coding 
genes), which are usually recognizable cross-species
So, look near similar genes (“homologs”)

Many riboswitches, e.g., are present in ~5 copies 
per genome
(Not strategy used in vertebrates - 1000x larger genomes)



Approach

Get bacterial genomes
For each gene, get 10-30 close orthologs (CDD)
Find most promising genes, based on conserved 

sequence motifs (Footprinter)
From those, find structural motifs (CMfinder)

Genome-wide search for more instances 
(Ravenna)

Expert analyses (Breaker Lab, Yale)
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Processing 
Times

Input from ~70 
complete Firmicute 
genomes available in 
late 2005-early 2006, 
totaling ~200 
megabases

95 

2946 CDD groups 

35975  motifs 

1740 motifs 

1466 motifs 

Retrieve upstream sequences 

Motif postprocessing 

Identify CDD group members < 10 CPU days 

Motif postprocessing 

Footprinter ranking < 10 CPU days 

 1 ~ 2 CPU months CMfinder 

RaveNnA  10 CPU months 

CMfinder refinement   < 1 CPU month 



Rank Score # CDD Rfam 
RAV CMF FP   RAV  CMF ID Gene  Descriptio n   

0 43 107 3400 367 11 9904 IlvB Thiamine pyrophosphate-requiring enzymes RF00230 T-box 

1 10 344 3115 96 22 13174 COG3859 Predicted membrane protein RF00059 THI 

2 77 1284 2376 112 6 11125 MetH Methionine synthase I specific DNA methylase RF00162 S_box 

3 0 5 2327 30 26 9991 COG0116 Predicted N6-adenine-specific DNA methylase RF00011 
RNaseP_bact_b 

4 6 66 2228 49 18 4383 DHBP  3,4-dihydroxy-2-butanone 4-phosphate synthase RF00050 RFN 

7 145 952 1429 51 7 10390 GuaA GMP synthase RF00167 Purine 

8 17 108 1322 29 13 10732 GcvP Glycine cleavage system protein P RF00504 Glycine 

9 37 749 1235 28 7 24631 DUF149 Uncharacterised BCR, YbaB family COG0718 RF00169 SRP_bact 

10 123 1358 1222 36 6 10986 CbiB Cobalamin biosynthesis protein CobD/CbiB  RF00174 Cobalamin 

20 137 1133 899 32 7 9895 LysA Diaminopimelate decarboxylase RF00168 Lysine 

21 36 141 896 22 10 10727 TerC Membrane protein TerC RF00080 yybP-ykoY 

39 202 684 664 25 5 11945 MgtE Mg/Co/Ni transporter MgtE RF00380 ykoK 

40 26 74 645 19 18 10323 GlmS Glucosamine 6-phosphate synthetase RF00234 glmS 

53 208 192 561 21 5 10892 OpuBB ABC-type proline/glycine betaine transport 
systems  

RF00005 tRNA1 

122 99 239 413 10 7 11784 EmrE Membrane transporters of cations and cationic 
drug 

RF00442 ykkC-yxkD 

255 392 281 268 8 6 10272 COG0398 Uncharacterized conserved protein RF00023 tmRNA 

 
Table 1: Motifs that correspond to Rfam families.  “Rank”: the three columns show ranks for refined motif clusters after genome scans (“RAV”), 
CMfinder motifs before genome scans (“CMF”), and FootPrinter results (“FP”).  We used the same ranking scheme for RAV and CMF.  “Score”: 

Table 1: Motifs that correspond to Rfam families
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Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments.  
Membership: # of seqs in overlap between our predictions and Rfam’s, the sensitivity (Sn) and 
specificity (Sp) of our membership predictions.  Overlap: the avg len of overlap between our 
predictions and Rfam’s (nt), the fractional lengths of the overlapped region in Rfam’s 
predictions (Sn) and in ours (Sp).  Structure: the avg # of correctly predicted canonical base 
pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of 
our predictions.  1After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increased to 
76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%. 97 

Rfam Membership Overlap Structure 
    # Sn Sp nt Sn Sp bp Sn Sp 
RF00174 Cobalamin 183 0.741 0.97 152 0.75 0.85 20 0.60 0.77 
RF00504 Glycine 92 0.561 0.96 94 0.94 0.68 17 0.84 0.82 
RF00234 glmS 34 0.92 1.00 100 0.54 1.00 27 0.96 0.97 
RF00168 Lysine 80 0.82 0.98 111 0.61 0.68 26 0.76 0.87 
RF00167 Purine 86 0.86 0.93 83 0.83 0.55 17 0.90 0.95 
RF00050 RFN 133 0.98 0.99 139 0.96 1.00 12 0.66 0.65 
RF00011 RNaseP_bact_b 144 0.99 0.99 194 0.53 1.00 38 0.72 0.78 
RF00162 S_box 208 0.95 0.97 110 1.00 0.69 23 0.91 0.78 
RF00169 SRP_bact 177 0.92 0.95 99 1.00 0.65 25 0.89 0.81 
RF00230 T-box 453 0.96 0.61 187 0.77 1.00 5 0.32 0.38 
RF00059 THI 326 0.89 1.00 99 0.91 0.69 13 0.56 0.74 
RF00442 ykkC-yxkD 19 0.90 0.53 99 0.94 0.81 18 0.94 0.68 
RF00380 ykoK 49 0.92 1.00 125 0.75 1.00 27 0.80 0.95 
RF00080 yybP-ykoY 41 0.32 0.89 100 0.78 0.90 18 0.63 0.66 
mean   145 0.84 0.91 121 0.81 0.82 21 0.75 0.77 
median   113 0.91 0.97 105 0.81 0.83 19 0.78 0.78 

 



Rank # CDD Gene: Description Annotation 
6 69 28178 DHOase IIa: Dihydroorotase PyrR attenuator [22] 

15 33 10097 RplL: Ribosomal protein L7/L1  L10 r-protein leader; see Supp 
19 36 10234 RpsF: Ribosomal protein S6 S6 r-protein leader 
22 32 10897 COG1179: Dinucleotide-utilizing enzymes  6S RNA [25] 
27 27 9926 RpsJ: Ribosomal protein S10 S10 r-protein leader; see Supp 
29 11 15150 Resolvase: N terminal domain   
31 31 10164 InfC: Translation initiation factor 3 IF-3 r-protein leader; see Supp 
41 26 10393 RpsD: Ribosomal protein S4 and related proteins  S4 r-protein leader; see Supp [30]  
44 30 10332 GroL: Chaperonin GroEL HrcA DNA binding site [46] 
46 33 25629 Ribosomal L21p: Ribosomal prokaryotic L21 protein  L21 r-protein leader; see Supp 
50 11 5638 Cad: Cadmium resistance transporter [47] 
51 19 9965 RplB: Ribosomal protein L2 S10 r-protein leader 
55 7 26270 RNA pol Rpb2 1: RNA polymerase beta subunit  
69 9 13148 COG3830: ACT domain-containing protein  
72 28 4174 Ribosomal S2: Ribosomal protein S2  S2 r-protein leader 
74 9 9924 RpsG: Ribosomal protein S7 S12 r-protein leader 
86 6 12328 COG2984: ABC-type uncharacterized transport system   
88 19 24072 CtsR: Firmicutes transcriptional repressor of class III CtsR DNA binding site [48] 

100 21 23019 Formyl trans N: Formyl transferase   
103 8 9916 PurE: Phosphoribosylcarboxyaminoimidazole   
117 5 13411 COG4129: Predicted membrane protein   
120 10 10075 RplO: Ribosomal protein L15  L15 r-protein leader 
121 9 10132 RpmJ: Ribosomal protein L36 IF-1 r-protein leader 
129 4 23962 Cna B: Cna protein B-type domain   
130 9 25424 Ribosomal S12: Ribosomal protein S12 S12 r-protein leader 
131 9 16769 Ribosomal L4: Ribosomal protein L4/L1 family  L3 r-protein leader 
136 7 10610 COG0742: N6-adenine-specific methylase  ylbH putative RNA motif [4] 
140 12 8892 Pencillinase R: Penicillinase repressor BlaI, MecI DNA binding site [49] 
157 25 24415 Ribosomal S9: Ribosomal protein S9/S16 L13 r-protein leader; Fig 3 
160 27 1790 Ribosomal L19: Ribosomal protein L19  L19 r-protein leader; Fig 2 
164 6 9932 GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose   
174 8 13849 COG4708: Predicted membrane protein   
176 7 10199 COG0325: Predicted enzyme with a TIM-barrel fold   
182 9 10207 RpmF: Ribosomal protein L32 L32 r-protein leader 
187 11 27850 LDH: L-lactate dehydrogenases   
190 11 10094 CspR: Predicted rRNA methylase   
194 9 10353 FusA: Translation elongation factors EF-G r-protein leader 
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Estimating Motif Significance

100 

Red: top 100 motifs.  
Black: 50 permutations of 

ClustalW alignment of 
each of those input sets 

This likely underestimates 
significance, but nevertheless 
all real motifs have p <.01, and 
73/100 better than all perms  
of their own input set 
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boxed = confirmed riboswitch 

Sudarsan, et al 
Science, 2008

Wang, et al  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Vertebrate ncRNAs

Some Results

102 



Some details below 

Human Predictions
Evofold

S Pedersen, G Bejerano, A Siepel, K 
Rosenbloom, K Lindblad-Toh, ES Lander, J 
Kent, W Miller, D Haussler, "Identification 
and classification of conserved RNA 
secondary structures in the human 
genome." 
PLoS Comput. Biol., 2, #4 (2006) e33. 

48,479 candidates (~70% FDR?)

RNAz 
S Washietl, IL Hofacker, M Lukasser, A Hutenhofer, PF 
Stadler, "Mapping of conserved RNA secondary 
structures predicts thousands of functional noncoding 
RNAs in the human genome." 
Nat. Biotechnol., 23, #11 (2005) 1383-90. 
30,000 structured RNA elements  
  1,000 conserved across all vertebrates.  
~1/3 in introns of known genes, ~1/6 in UTRs  
~1/2 located far from any known gene 

 

FOLDALIGN 
E Torarinsson, M Sawera, JH 
Havgaard, M Fredholm, J Gorodkin, 
"Thousands of corresponding 
human and mouse genomic regions 
unalignable in primary sequence 
contain common RNA structure." 
Genome Res., 16, #7 (2006) 885-9. 
1800 candidates from 36970 (of 
100,000) pairs 

CMfinder 
Torarinsson, Yao, Wiklund, Bramsen, Hansen, 
Kjems, Tommerup, Ruzzo and Gorodkin. 
Comparative genomics beyond sequence based 
alignments: RNA structures in the ENCODE regions. 
Genome Research, Feb 2008, 18(2):242-251 PMID: 
18096747 
6500 candidates in ENCODE alone (better FDR, but 
still high) 

103 



ncRNA discovery in Vertebrates

Natural approach : Align, Fold, Score
Previous studies focus on highly conserved 
regions (Washietl, Pedersen et al. 2007)

Evofold  (Pedersen et al. 2006)

RNAz  (Washietl et al. 2005)

We explore regions with weak ���
sequence conservation, where ���
alignments aren’t trustworthy

 

Thousands of  
candidates 

Thousands 
more 
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CMfinder Search in Vertebrates

Extract ENCODE* Multiz alignments 
Remove exons, most conserved elements.  
56017 blocks, 8.7M bps.

Apply CMfinder to both strands.
10,106 predictions, 6,587 clusters. 

High false positive rate, but still suggests 1000’s of RNAs. 

(We’ve applied CMfinder to whole human genome: ���
  many 100’s of CPU years.   Analysis in progress.)

* ENCODE: deeply annotated 1% of human genome

Trust 17-way 
alignment for 
orthology, not for 
detailed 
alignment 
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between successive indels, measured as the number of
homologous nucleotides surviving in between, follows a
geometric distribution. Note that this conclusion holds
irrespective of the distribution of indel lengths themselves,
and of the relative incidence of insertions and deletions.

The fact that indel events often involve several nucleotides
simultaneously introduces co-dependencies in the survival
probabilities of nearby sites. In other words, the probability
that an ancestral nucleotide survives as a homologous
nucleotide in two descendant species is dependent on
whether neighbouring nucleotides survive. However, assum-
ing independence of indel events, survival probabilities do
become independent conditional on the survival of the left
(or right) neighbour. Indeed, if p is the uniform conditional
survival probability for a single nucleotide, the (conditional)
survival probability of a sequence of L nucleotides is pL

because of the assumption of independence. In this paper, we
refer to q ¼ 1"p as the indel probability per site, or less
precisely, the indel rate.

Although indels cannot be observed directly, for the low
indel rates observed in mammals they closely correspond to
gaps in the alignment. It thus may be predicted that, under
neutrality, the lengths of ungapped sequence between
successive alignment gaps—intergap segments (IGS)—would
be distributed similarly to the geometric distribution
predicted for the distance between successive indels. A
whole-genome histogram of IGS lengths, obtained from
BlastZ human–mouse alignments [13] indeed shows a re-
markably close fit to the geometric distribution (a straight
line in log-linear coordinates) within the length range 20–50
bp, with the model explaining 99.996% of the variance
(Figure 1A). To show that this close fit is not caused by
alignment artefacts, human Chromosome 21 was realigned to
orthologous sequence in mouse using a simple probabilistic
aligner and three sets of parameters. The resulting histograms
show similarly close fits within the range 20–50 bp, with the q
parameters within 95% confidence intervals of one another
(see Materials and Methods).

Outside of the range of 20–50 bp, histogram counts deviate
from the neutral model predictions, with IGS of less than 20
bp being underrepresented, and IGS longer than 50 bp being
overrepresented. The underrepresentation of short intergap
distances is caused by a systematic alignment artefact termed
gap attraction [14], by which two nearby indel events give rise
to a single alignment gap when this more parsimoniously
explains the observed sequence data. This phenomenon does
not reflect an evolutionary process, and thus, in what follows,
ungapped segments shorter than 20 bp were ignored.

To investigate whether the overrepresentation of long
ungapped segments is, to a large extent, caused by indel-
purifying selection, a similar histogram was constructed using
only alignments of ARs (see Materials and Methods). These
elements are thought to evolve predominantly neutrally
[15,16], and the histogram obtained indeed closely followed
the predictions of the neutral model, with only a slight
overrepresentation of long ungapped segments (Figure 1B).
These observations are further quantified below.

Accounting for Indel Rate Variation
To quantify the extent of any deviation of the intergap

histogram from the neutral model, we introduced a param-
eter r. This parameter measures the fraction of nucleotides

in ungapped segments that are overrepresented in the
genome (or among ARs) compared to the prediction of the
neutral model (see Materials and Methods), and is visually
represented in green in Figure 1A. For the whole-genome and
AR histograms, r was determined to be 0.1234 and 0.0074,
respectively. (Note that r is not an estimate of the proportion

Figure 1. Genomic Distribution of Intergap Distances

Histogram of intergap distance counts (log10 scale) in human–mouse
alignments, (A) within the whole genome and (B) within ARs. Blue lines
indicate predictions of the neutral model (central line, geometric
distribution; the slope is related to the per-site indel probability q),
and expected sampling errors (outer curves; 95% confidence intervals for
a binomial distribution per length bin). Insets show a blow-up of the
deviation from the model (log10 scale). Parameters were obtained by
linear regression to the log-counts, weighted by the expected binomial
sampling error. The indel distribution on AR data shows an excellent
model fit, in particular in the range 20–80 bp, with 92% of counts (56/61)
lying within 95% confidence limits. The whole-genome histogram shows
a similarly tight fit in the range 20–50 bp, and a large excess of long
intergap distances over neutral model predictions (green) beyond ;50
bp. The intercept of the geometric prediction occurs at a length L¼ 300.
This implies that less than one ungapped sequence of any length L .
300 is expected genome-wide under the neutral model; however the
model does predict a small but nonzero probability for any such
sequence, even under neutrality.
DOI: 10.1371/journal.pcbi.0020005.g001

PLoS Computational Biology | www.ploscompbiol.org January 2006 | Volume 2 | Issue 1 | e50003

Using Indels to Identify Functional DNA

Genomic 
Intergap 
Distances���
(Human-Mouse)

Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model 
Gerton Lunter, Chris P. Ponting, Jotun Hein, PLoS Comput Biol 2006, 2(1): e5. 
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G+C data P N Expected Observed P-value %
0-35 igs 0.062 380 23 24.5 0.430 5.8%
35-40 igs 0.082 742 61 70.5 0.103 11.3%
40-45 igs 0.082 1216 99 129.5 0.00079 18.5%
45-50 igs 0.079 1377 109 162.5 5.16E-08 20.9%
50-100 igs 0.070 2866 200 358.5 2.70E-31 43.5%
all igs 0.075 6581 491 747.5 1.54E-33 100.0%

Overlap w/ Indel Purified Segments

IPS presumed to signal purifying selection
Majority (64%) of candidates have >45% G+C
Strong P-value for their overlap w/ IPS 
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      4799 
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Comparison with Evofold, RNAz

         3134 

 
      1781 

548 

44 
169 

230 

CMfinder Evofold 

RNAz 

Small overlap (w/ highly significant p-values) emphasizes complementarity
Strong association with “Indel purified segments” - I.e., apparently under selection
Strong association with known genes
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 (17 vertebrates)

Torarinsson,et al. 
Genome Research 2008.  



Alignment Matters
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The original MULTIZ alignment without flanking regions. RNAz Score: 0.132 (no RNA)
Human GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGT----CTTAACAGTATGACCAAAAACTGAAGTTCTCTATAGGATGCTGTAG-CACTCAATGGTGCTATGTTTTCCTCAGGAGA

Chimp GGACATTTCAATGCGGGCTC-ATGGGGCTGTGAAGCCAAGAGCT----ATTAACACTATGACCAAGGACTGAAATTCTCTATAGGAT-CCATAG-CACTGAATAGTGCTATATTTTCTGGAGGAAG

Cow GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAACCGGGAGCT----CTTAATGCTGTGACCAAAGATTGAAGTTCTCCATAGAATATTACGGTCACTCAAAAGTGCTATGTTTTCCTAAGGAGA

Dog GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAACCAAGGGCT----CTTAACTCTGTGACCAAATATTAGAGTTCTCCATAGGATGT-----------AATAGTGCTATGTTTTCCTGAAGAGA

Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCAAGAACT----CTTAACTGTATGCCCAAAGATTAAAGTTCTCCATAAGACGCAATGCTCACTCAATAATGTTACATATTCTTGAGAAGT

Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGAGGTAGGTCTTAACAGTATAACCAAAGACTGAAGTTCTCTATAGGATGCCATAG-CACTTAATGGTGCTATGTTTTCCTCAGGAGA

Str ((((((......(((((((...(((..........)))..))))....)))......))))))............(((((.(((((....((((.((((....))))))))....))))).)))))

The local CMfinder re-alignment of the MULTIZ block. RNAz Score: 0.709 (RNA)
Human GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCA-----AGAGGTCTTAACAGTATGACCAAAAACTGAAGTTCTCTATAGGATGCTGTAG-CACTCAATGGTGCTATGTTTTCCTCAGGAGA

Chimp GGACATTTCAATGCGGGCTC-ATGGGGCTGT-GAAGCCA-----AGAGCTATTAACACTATGACCAAGGACTGAAATTCTCTATAGGAT-CCATAG-CACTGAATAGTGCTATATTTTCTGGAGGAAG

Cow GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAA-CCG-----GGAGCTCTTAATGCTGTGACCAAAGATTGAAGTTCTCCATAGAATATTACGGTCACTCAAAAGTGCTATGTTTTCCTAAGGAGA

Dog GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAA-CCA-----AGGGCTCTTAACTCTGTGACCAAATATTAGAGTTCTCCATAGGATGTAA-----------TAGTGCTATGTTTTCCTGAAGAGA

Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTCA-----AGAACTCTTAACTGTATGCCCAAAGATTAAAGTTCTCCATAAGACGCAATGCTCACTCAATAATGTTACATATTCTTGAGAAGT

Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCAAGAGG-TAGGTCTTAACAGTATAACCAAAGACTGAAGTTCTCTATAGGATGCCATAG-CACTTAATGGTGCTATGTTTTCCTCAGGAGA

Str ((((((......((((((((..(((...........)))......))))))))......))))))............(((((.(((((....((((.((((....))))))))....))))).)))))
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10 of 11 top (differentially) expressed



Summary

After careful control of FDR,
Widespread structured RNA prediction
Evidence for conservation
Evidence for expression
Evidence for elevated expression of 

structured vs non-structured in CDS 
contexts

Hypothesis: cis-regulatory roles at these loci
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ncRNA Summary

ncRNA is a “hot” topic
For family homology modeling: CMs
Training & search like HMM (but slower)

Dramatic acceleration possible
Automated model construction possible 
New computational methods yield new discoveries

Many open problems
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