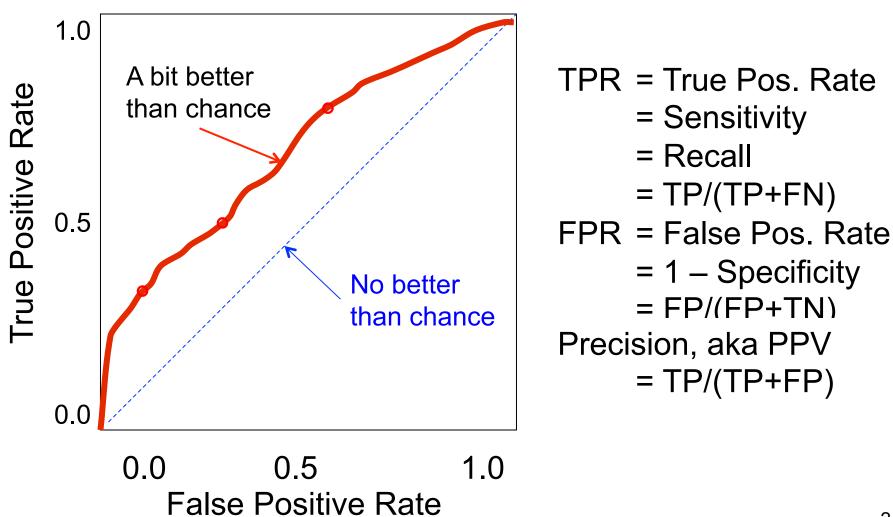
HW5

ROC Curves

Viewing 2-parameter trade-offs (true/false positives)



Blue = ORF length threshold; Green = Markov Model threshold 411 1.0 537 ORF length-based threshold 0.9 TPR MM-based threshold 0.8 TPR 0.2 9.0 0.0 0.5 0.0 0.2 0.0020 0.0000 0.0005 0.0010 0.0015

Speculation/EC

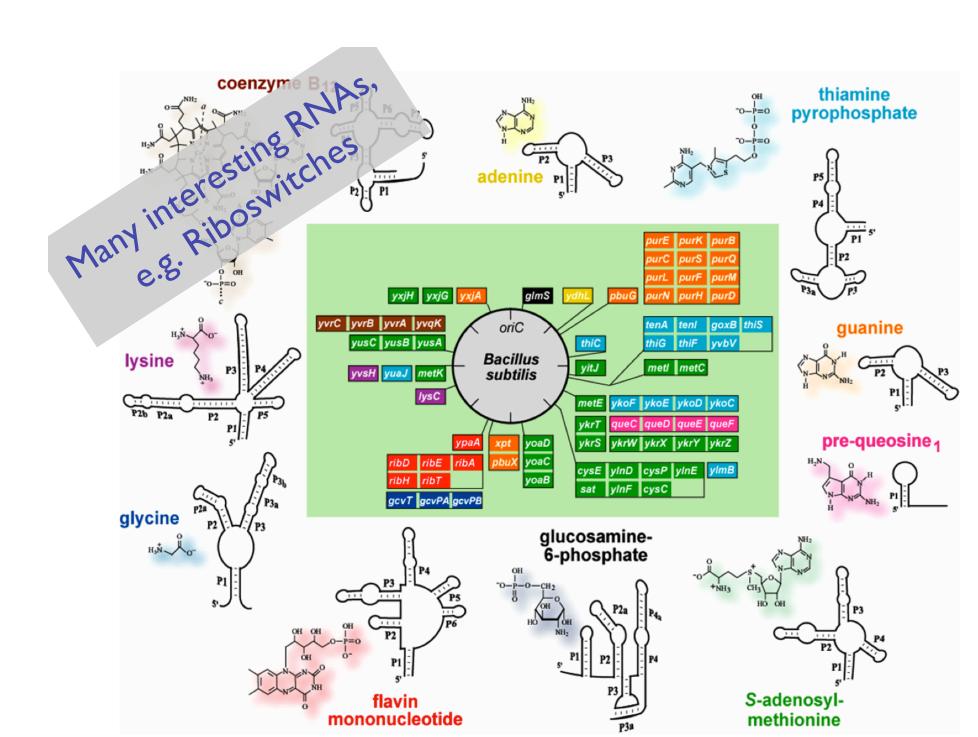
- Long ORFs overlapped by many short ORFs in the 2 other reading frames
- So (excluding stop codons), most data training the plus model is also used (twice) to train the minus model
- Long ORFs on other strand also feed minus model (in triplicate)
- Is there a better way?

RNA Search and Motif Discovery

CSEP 590 B Computational Biology

Previous Lecture

Many biologically interesting roles for RNA RNA secondary structure prediction



Structure Prediction Prediction Prediction

Maximum Pairing

- + works on single sequences
- + simple
- too inaccurate

Minimum Energy

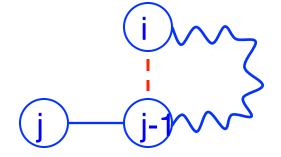
- + works on single sequences
- ignores pseudoknots
- only finds "optimal" fold

Partition Function

- + finds all folds
- ignores pseudoknots

"Crediction al pairing of r_i ... r_j" Two possibilities

j Unpaired: Find best pairing of r_i ... r_{i-1}

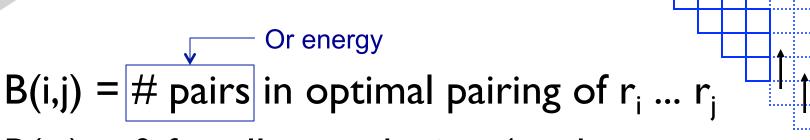


j Paired (with some k): Find best $r_i \dots r_{k-1} +$ best $r_{k+1} \dots r_{j-1}$ plus I

Why is it slow? Why do pseudoknots matter?



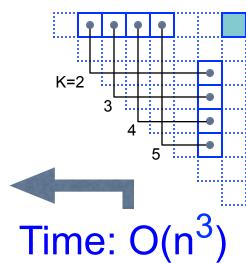
Nuspediction: Structure computation Order



B(i,j) = 0 for all i, j with $i \ge j-4$; otherwise

$$B(i,j) = \max of:$$

$$\begin{cases} B(i,j-1) \\ \max \{ B(i,k-1)+1+B(k+1,j-1) | \\ i \le k < j-4 \text{ and } r_k-r_j \text{ may pair} \end{cases}$$



Loop-based energy version is better; recurrences similar, slightly messier

Today

Structure prediction via comparative analysis

Covariance Models (CMs) represent RNA sequence/structure motifs

Fast CM search

Motif Discovery

Applications in prokaryotes & vertebrates

Structure Prediction

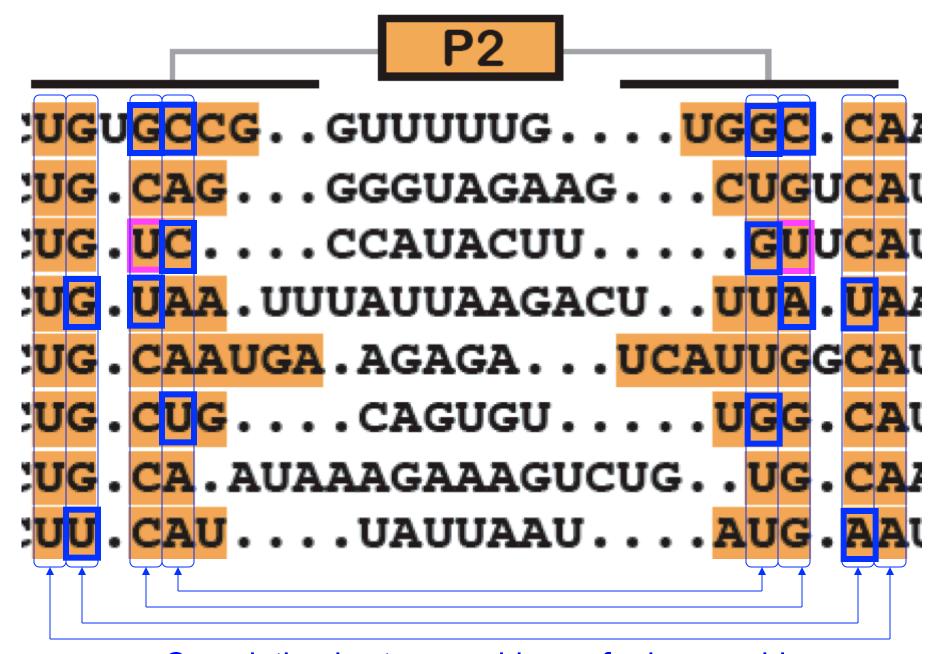
Approaches, II

Comparative sequence analysis

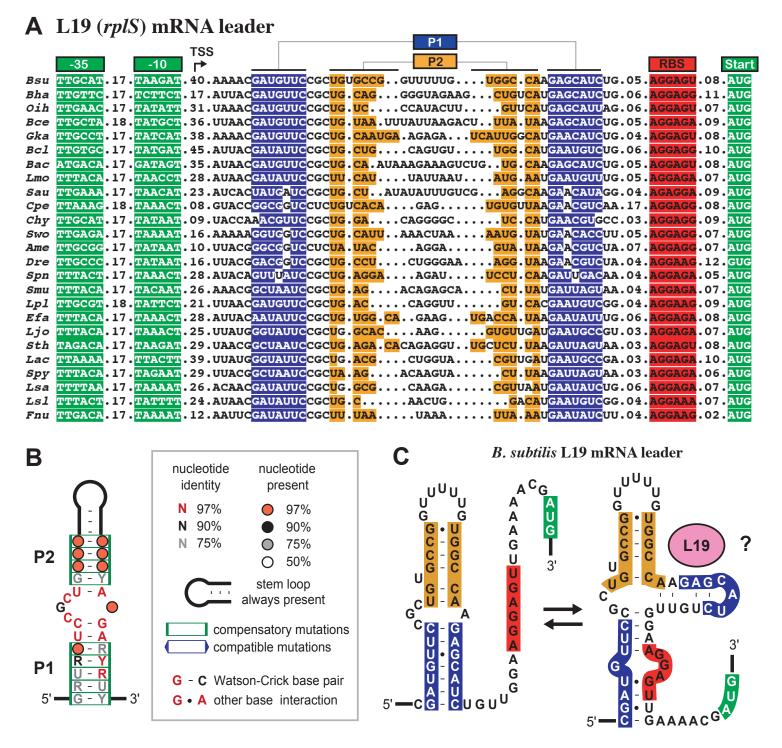
- + handles all pairings (potentially incl. pseudoknots)
- requires several (many?) aligned, appropriately diverged sequences

Stochastic Context-free Grammars
Roughly combines min energy & comparative, but
no pseudoknots

Physical experiments (x-ray crystalography, NMR)



Example: Ribosomal Autoregulation



Mutual Information

$$M_{ij} = \sum_{xi,xj} f_{xi,xj} \log_2 \frac{f_{xi,xj}}{f_{xi}f_{xj}}; \quad 0 \le M_{ij} \le 2$$

Max when *no* seq conservation but perfect pairing MI = expected score gain from using a pair state (below) Finding optimal MI, (i.e. opt pairing of cols) is hard(?) Finding optimal MI without pseudoknots can be done by dynamic programming

9 G G G G G G G **A** 16 0 0 16

M.I. Example (Artificial)

MI:	1	2	3	4	5	6	7	8	9
9	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0		
7	0	0	2	0.30	0	1	1		
6	0	0	1	0.55	1		•		
5	0	0	0	0.42					
4	0	0	0.30						
3	0	0							
2	0								
1									

Cols 1 & 9, 2 & 8: perfect conservation & *might* be base-paired, but unclear whether they are. M.I. = 0

Cols 3 & 7: *No* conservation, but always W-C pairs, so seems likely they do base-pair. M.I. = 2 bits.

Cols 7->6: unconserved, but each letter in 7 has only 2 possible mates in 6. M.I. = 1 bit.

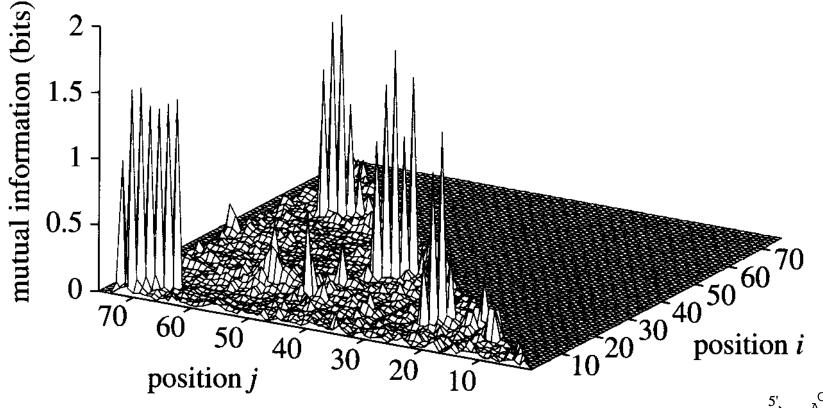
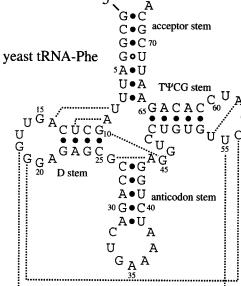


Figure 10.6 A mutual information plot of a tRNA alignment (top) shows four strong diagonals of covarying positions, corresponding to the four stems of the tRNA cloverleaf structure (bottom; the secondary structure of yeast phenylalanine tRNA is shown). Dashed lines indicate some of the additional tertiary contacts observed in the yeast tRNA-Phe crystal structure. Some of these tertiary contacts produce correlated pairs which can be seen weakly in the mutual information plot.



MI-Based Structure-Learning

Find best (max total MI) subset of column pairs among i...j, subject to absence of pseudo-knots

$$S_{i,j} = \max \begin{cases} S_{i,j-1} & \text{j unpaired} \\ \max_{i \leq k < j-4} S_{i,k-1} + M_{k,j} + S_{k+1,j-1} & \text{j paired} \end{cases}$$

"Just like Nussinov/Zucker folding"

BUT, need enough data---enough sequences at right phylogenetic distance

Computational Problems

How to predict secondary structure

How to model an RNA "motif"

(I.e., sequence/structure pattern)

Given a motif, how to search for instances

Given (unaligned) sequences, find motifs

How to score discovered motifs

How to leverage prior knowledge

Motif Description

RNA Motif Models

"Covariance Models" (Eddy & Durbin 1994)
aka profile stochastic context-free grammars
aka hidden Markov models on steroids
Model position-specific nucleotide
preferences and base-pair preferences

Pro: accurate

Con: model building hard, search slow

Eddy & Durbin 1994: What

A probabilistic model for RNA families

The "Covariance Model"

≈ A Stochastic Context-Free Grammar

A generalization of a profile HMM

Algorithms for Training

From aligned or unaligned sequences

Automates "comparative analysis"

Complements Nusinov/Zucker RNA folding

Algorithms for searching

Main Results

Very accurate search for tRNA

(Precursor to tRNAscanSE - current favorite)

Given sufficient data, model construction comparable to, but not quite as good as, human experts

Some quantitative info on importance of pseudoknots and other tertiary features

Probabilistic Model Search

As with HMMs, given a sequence, you calculate likelihood ratio that the model could generate the sequence, vs a background model

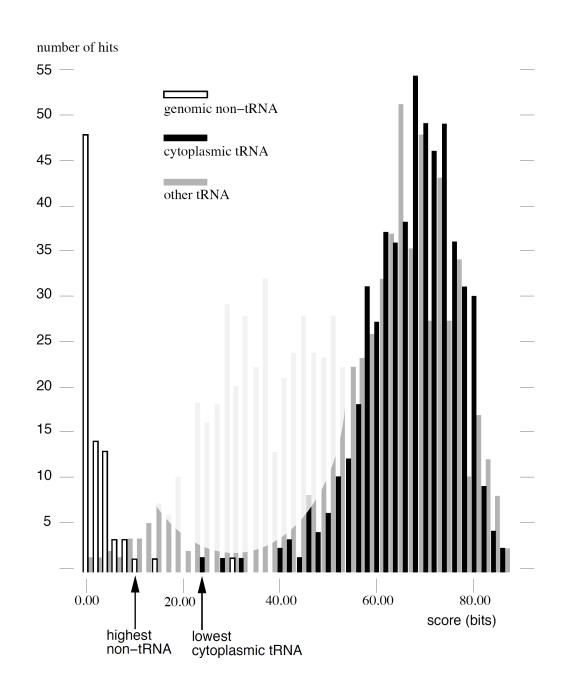
You set a score threshold

Anything above threshold → a "hit"

Scoring:

"Forward" / "Inside" algorithm - sum over all paths Viterbi approximation - find single best path (Bonus: alignment & structure prediction)

Example: searching for tRNAs



Profile Hmm Structure

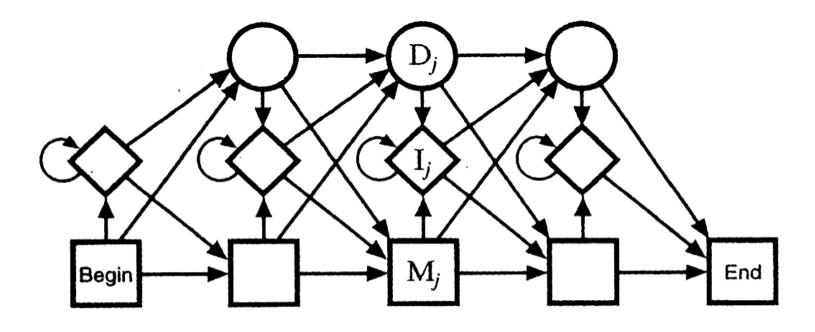


Figure 5.2 The transition structure of a profile HMM.

M_j: Match states (20 emission probabilities)

Ij: Insert states (Background emission probabilities)

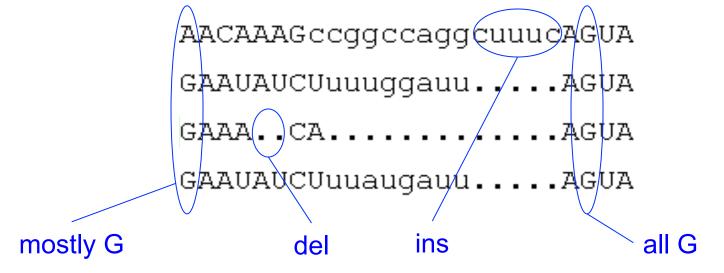
Dj: Delete states (silent - no emission)

How to model an RNA "Motif"?

Conceptually, start with a profile HMM:

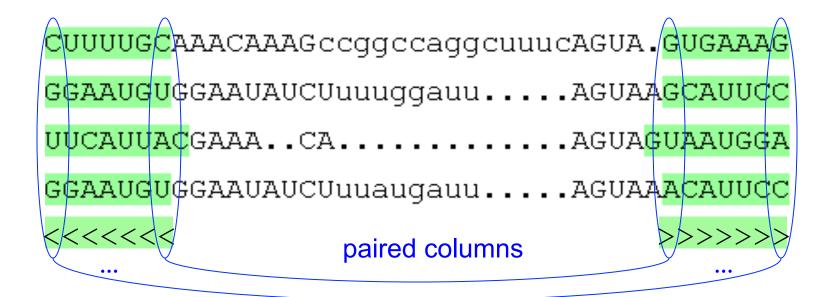
from a multiple alignment, estimate nucleotide/ insert/delete preferences for each position

given a new seq, estimate likelihood that it could be generated by the model, & align it to the model



How to model an RNA "Motif"?

Add "column pairs" and pair emission probabilities for base-paired regions



Does not handle "Paired Hmm Structure Does columns" above — — Begin

Figure 5.2 The transition structure of a profile HMM.

M_j: Match states (20 emission probabilities)

Ij: Insert states (Background emission probabilities)

D_j: Delete states (silent - no emission)

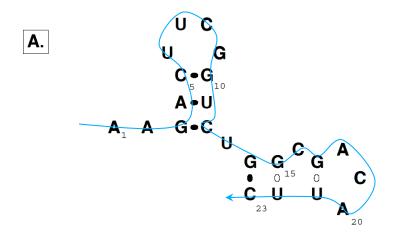
CM Structure

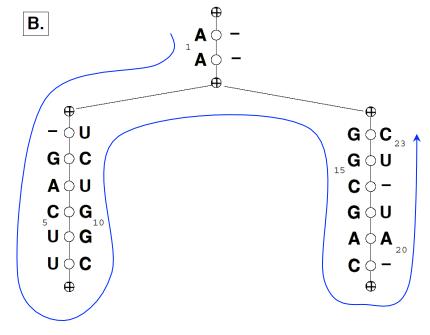
A: Sequence + structure

B: the CM "guide tree"

C: probabilities of letters/ pairs & of indels

Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)



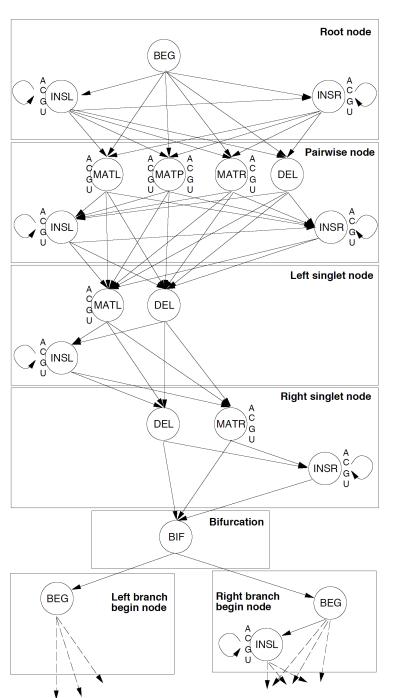


Overall CM Architecture

One box ("node") per node of guide tree

BEG/MATL/INS/DEL just like an HMM

MATP & BIF are the key additions: MATP emits pairs of symbols, modeling basepairs; BIF allows multiple helices



CM Viterbi Alignment

(the "inside" algorithm)

```
x_i = i^{th} letter of input

x_{ij} = \text{substring } i,...,j of input

T_{yz} = P(\text{transition } y \rightarrow z)

E_{x_i,x_j}^y = P(\text{emission of } x_i,x_j \text{ from state } y)

S_{ij}^y = \max_{\pi} \log P(x_{ij} \text{ gen'd starting in state } y \text{ via path } \pi)
```

CM Viterbi Alignment

(the "inside" algorithm)

 $S_{ii}^{y} = \max_{\pi} \log P(x_{ii} \text{ generated starting in state } y \text{ via path } \pi)$

$$S_{ij}^{y} = \begin{cases} \max_{z} [S_{i+1,j-1}^{z} + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}] & \text{match pair} \\ \max_{z} [S_{i+1,j}^{z} + \log T_{yz} + \log E_{x_{i}}^{y}] & \text{match/insert left} \\ \max_{z} [S_{i,j-1}^{z} + \log T_{yz} + \log E_{x_{j}}^{y}] & \text{match/insert right} \\ \max_{z} [S_{i,j}^{z} + \log T_{yz}] & \text{delete} \\ \max_{i < k \le j} [S_{i,k}^{y_{left}} + S_{k+1,j}^{y_{right}}] & \text{bifurcation} \end{cases}$$

Time O(qn³), q states, seq len n compare: O(qn) for profile HMM

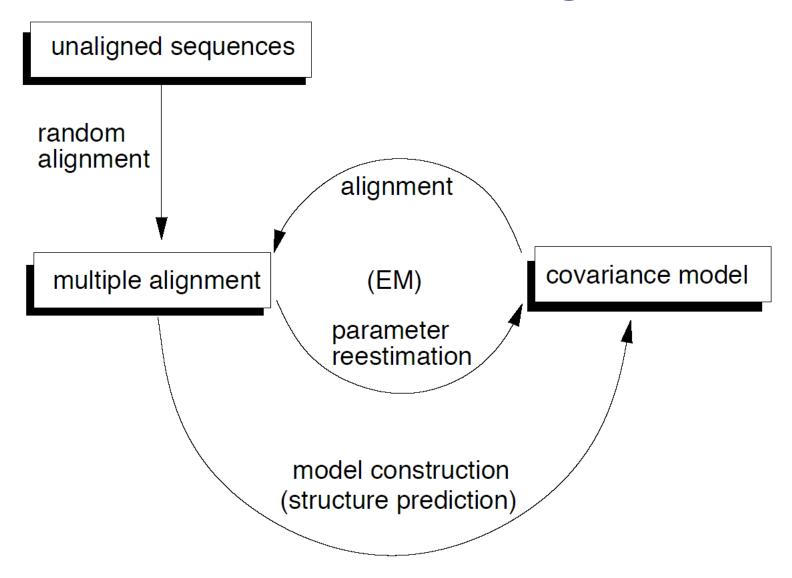
Primary vs Secondary Info

	Avg.	Min	Max	ClustalV	1° info	2° info
Dataset	id	id	id	accuracy	(bits)	(bits)
TEST	.402	.144	1.00	64%	43.7	30.0-32.3
SIM100	.396	.131	.986	54%	39.7	30.5-32.7
SIM65	.362	.111	.685	37%	31.8	28.6-30.7

disallowing / allowing pseudoknots

$$\left(\sum_{i=1}^{n} \max_{j} M_{i,j}\right) / 2$$

Model Training



IN

Comparison to TRNASCAN

Fichant & Burks - best heuristic then

97.5% true positive

0.37 false positives per MB

CM A1415 (trained on trusted alignment)

> 99.98% true positives

< 0.2 false positives per MB

Current method-of-choice is "tRNAscanSE", a CM-based scan with heuristic pre-filtering (including TRNASCAN?) for performance reasons.

Slightly different evaluation criteria

tRNAScanSE

```
Uses 3 older heuristic tRNA finders as prefilter
Uses CM built as described for final scoring Actually 3(?) different CMs eukaryotic nuclear
```

prokaryotic

organellar

Used in "all" genome annotation projects

An Important Application: Rfam

Rfam – an RNA family DB

Griffiths-Jones, et al., NAR '03, '05, '08, '11, '12

Was biggest scientific comp user in Europe - 1000 cpu cluster for a month per release

Rapidly growing:

Rel	1.0, 1/03:	25 families,	55k instances	DB size:
Rel	7.0, 3/05:	503 families,	363k instances	~8GB
Rel	9.0, 7/08:	603 families,	636k instances	
Rel	9.1, 1/09:	1372 families,	1148k instances	
Rel	10.0, 1/10:	1446 families,	3193k instances	~160GB
Rel	11.0, 8/12:	2208 families,	6125k instances	~320GB
Rel	12.0, 9/14:	2450 families,	19623k instances	

RF00037: Example Rfam Family

Input (hand-curated):

MSA "seed alignment"

SS_cons

Score Thresh T

Window Len W

Output:

CM

scan results & "full alignment"

phylogeny, etc.

IRE (partial seed alignment):

Hom.sap.	GUUCCUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.	UUUCUUC . UUCAACAGUGUUUGGAU <mark>GGAAC</mark>
Hom.sap.	UUUCCUGUUUCAACAGUGCUUGGA . <mark>GGAAC</mark>
Hom.sap.	UUUAUCAGUGACAGAGUUCACU.AUAAA
Hom.sap.	UCUCUUGCUUCAACAGUGUUUGGAU <mark>GGAAC</mark>
Hom.sap.	AUUAUCGGGAACAGUGUUUCCC.AUAAU
Hom.sap.	UCUUGCUUCAACAGUGUUUGGAC <mark>GGAAG</mark>
Hom.sap.	UGUAUCGGAGACAGUGAUCUCC.AUAUG
Hom.sap.	AUUAUCGGAAGCAGUGCCUUCC.AUAAU
Cav.por.	UCUCCUGCUUCAACAGUGCUUGGACGGAGC
Mus.mus.	UAUAUCGGAGACAGUGAUCUCC.AUAUG
Mus.mus.	UUUCCUGCUUCAACAGUGCUUGAACGGAAC
Mus.mus.	GUACUUGCUUCAACAGUGUUUGAACGGAAC
Rat.nor.	UAUAUCGGAGACAGUGACCUCC.AUAUG
Rat.nor.	UAUCUUGCUUCAACAGUGUUUGGAC <mark>GGAAC</mark>
SS_cons	<<<<<>>>>>.>>>>

Rfam – key issues

Overly narrow families

Variant structures/unstructured RNAs

Spliced RNAs

RNA pseudogenes

Human ALU is SRP related w/ I.Im copies

Mouse B2 repeat (350k copies) tRNA related

Speed & sensitivity

Motif discovery/hand-made models

CM Summary

Covariance Models (CMs) represent conserved RNA sequence/structure motifs

They allow accurate search

But

- a) search is slow
- b) model construction is laborious

An Important Need: Faster Search

Homology search

"Homolog" – similar by descent from common ancestor Sequence-based

Smith-Waterman

FASTA

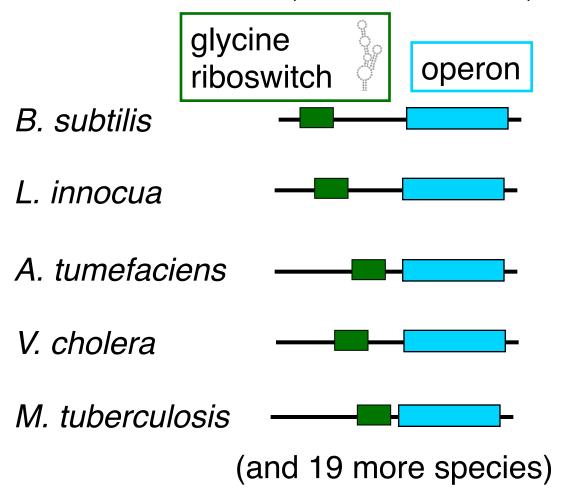
BLAST

For RNA, sharp decline in sensitivity at ~60-70% identity

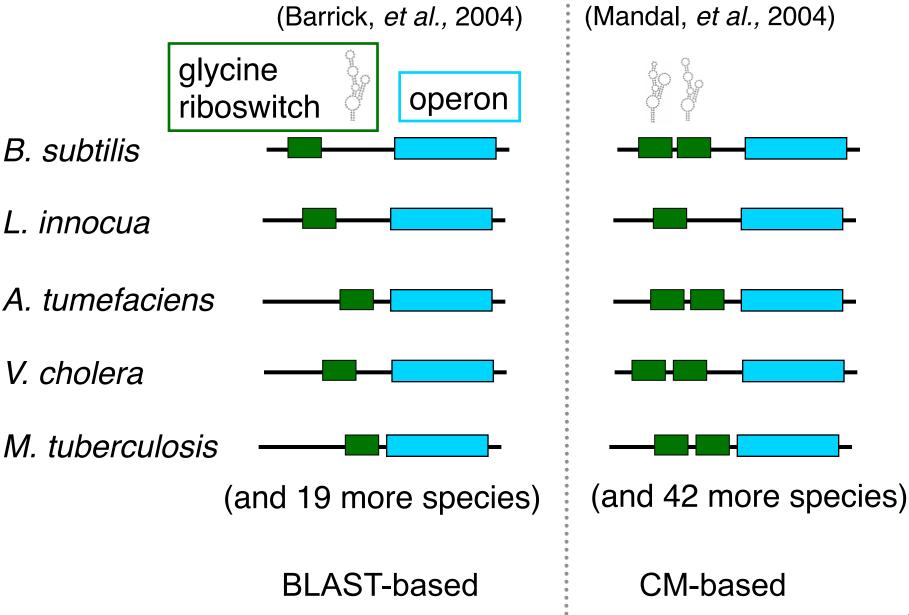
So, use structure, too

Impact of RNA homology search

(Barrick, et al., 2004)



Impact of RNA homology search



Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy

Zasha Weinberg

& W.L. Ruzzo

Recomb '04, ISMB '04, Bioinfo '06

RaveNnA: Genome Scale RNA Search

Typically 100x speedup over raw CM, w/ no loss in accuracy:

Drop structure from CM to create a (faster) HMM

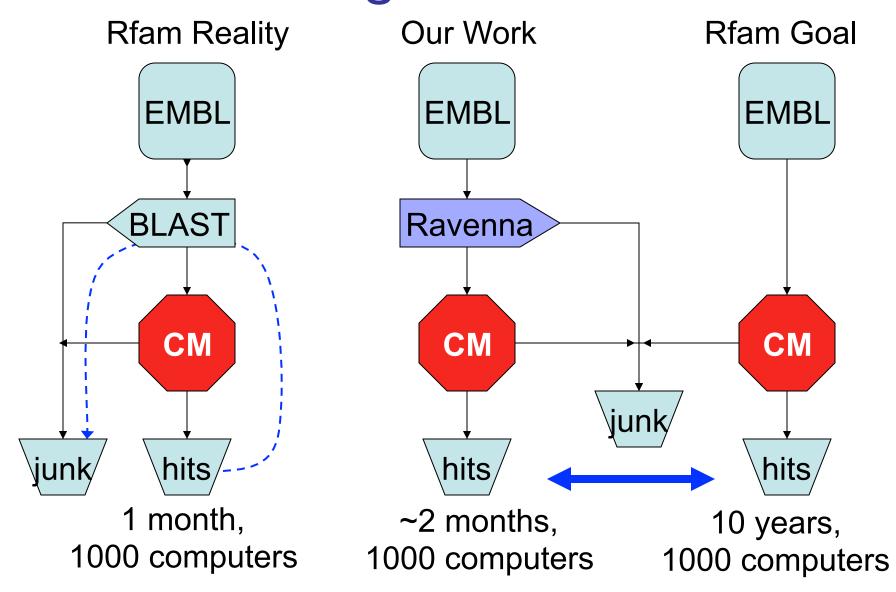
Use that to pre-filter sequence;

Discard parts where, provably, CM score < threshold;

Actually run CM on the rest (the promising parts)

Assignment of HMM transition/emission scores is key (a large convex optimization problem)

CM's are good, but slow



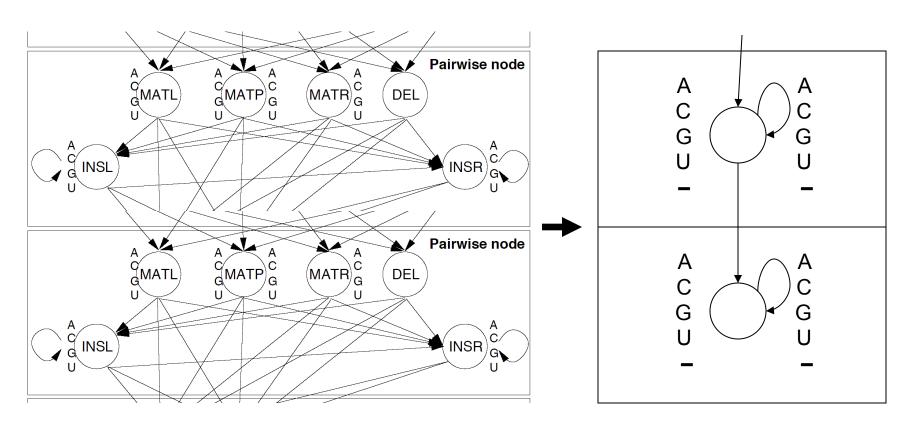
Root node GINSL Pairwise node MATP C MATR G GINSL INSR G Left singlet node DEL Right singlet node DEL Bifurcation Right branch BEG Left branch **BEG** begin node begin node

Covariance Model

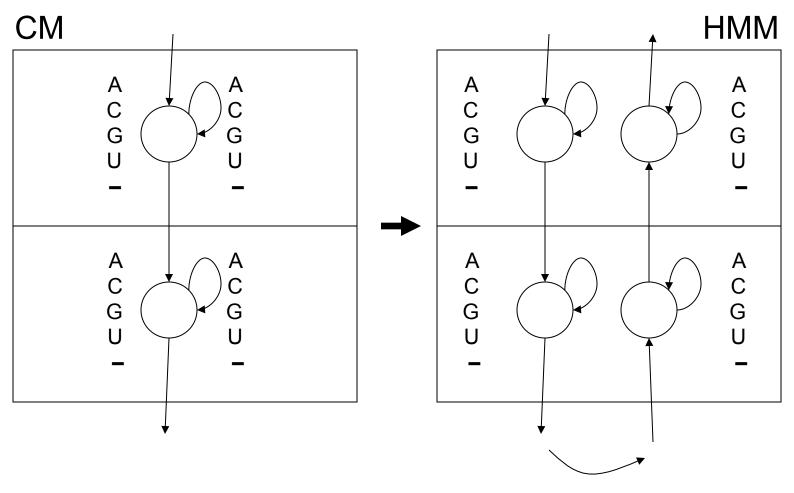
Key difference of CM vs HMM: Pair states emit paired symbols, corresponding to base-paired nucleotides; 16 emission probabilities here.

Oversimplified CM

(for pedagogical purposes only)



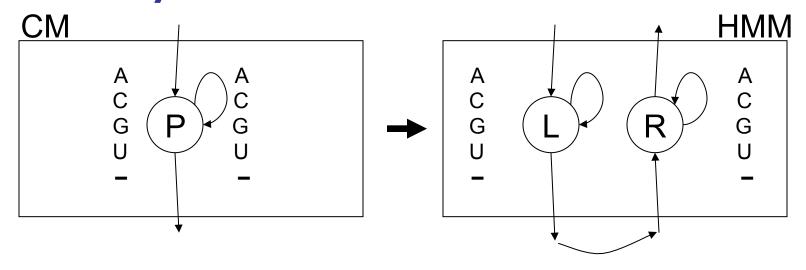
CM to HMM



25 emisions per state

5 emissions per state, 2x states

Key Issue: 25 scores → 10



Need: log Viterbi scores CM ≤ HMM

Viterbi/Forward Scoring

```
Path \pi defines transitions/emissions

Score(\pi) = product of "probabilities" on \pi

NB: ok if "probs" aren't, e.g. \Sigma \neq I

(e.g. in CM, emissions are odds ratios vs

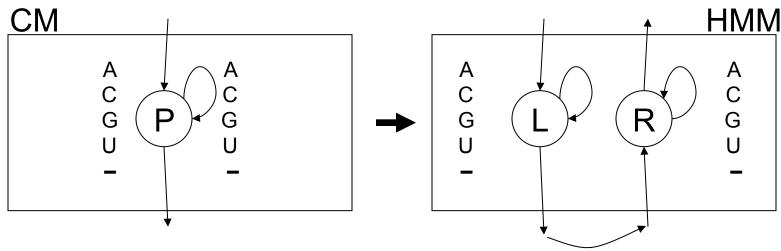
Oth-order background)

For any nucleotide sequence x:

Viterbi-score(x) = max{ score(\pi) | \pi emits x}

Forward-score(x) = \Sigma{ score(\pi) | \pi emits x}
```

Key Issue: 25 scores → 10



Need: log Viterbi scores CM ≤ HMM

$$\begin{split} P_{AA} & \leq L_A + R_A & P_{CA} \leq L_C + R_A & ... \\ P_{AC} & \leq L_A + R_C & P_{CC} \leq L_C + R_C & ... \\ P_{AG} & \leq L_A + R_G & P_{CG} \leq L_C + R_G & ... \\ P_{AU} & \leq L_A + R_U & P_{CU} \leq L_C + R_U & ... \\ P_{A-} & \leq L_A + R_- & P_{C-} \leq L_C + R_- & ... \\ \end{split}$$

Rigorous Filtering

$$\begin{aligned} P_{AA} &\leq L_A + R_A \\ P_{AC} &\leq L_A + R_C \\ P_{AG} &\leq L_A + R_G \\ P_{AU} &\leq L_A + R_U \\ P_{A-} &\leq L_A + R_- \end{aligned}$$

Any scores satisfying the linear inequalities give rigorous filtering

Proof:

CM Viterbi path score

- ≤ "corresponding" HMM path score
- ≤ Viterbi HMM path score
 (even if it does not correspond to any CM path)

Some scores filter better

$$P_{UA} = I \le L_U + R_A$$

 $P_{UG} = 4 \le L_U + R_G$

Option I:

$$L_U = R_A = R_G = 2$$

Option 2:

$$L_U = 0, R_A = I, R_G = 4$$

Assuming ACGU ≈ 25%

Opt I:

$$L_U + (R_A + R_G)/2 = 4$$

Opt 2:

$$L_U + (R_A + R_G)/2 = 2.5$$

Optimizing filtering

For any nucleotide sequence x:

```
Viterbi-score(x) = max{ score(\pi) | \pi emits x }
```

Forward-score(x) = $\sum \{ score(\pi) \mid \pi emits x \}$

Expected Forward Score

$$E(L_i, R_i) = \sum_{\text{all sequences } x} Forward\text{-score}(x) *Pr(x)$$

NB: E is a function of L_i, R_i only

Under 0th-order background model

Optimization:

Minimize $E(L_i, R_i)$ subject to score Lin.Ineq.s

This is heuristic ("forward $\downarrow \Rightarrow Viterbi \downarrow \Rightarrow filter \downarrow$ ")

But still rigorous because "subject to score Lin.Ineq.s"

Calculating E(L_i, R_i)

$$E(L_i, R_i) = \sum_x Forward-score(x)*Pr(x)$$

Forward-like: for every state, calculate expected score for all paths ending there; easily calculated from expected scores of predecessors & transition/emission probabilities/scores

Minimizing $E(L_i, R_i)$

(subject to linear constraints)

Calculate E(L_i, R_i) symbolically, in terms of emission scores, so we can do partial derivatives for numerical convex optimization algorithm

Forward:

$$f_k(i) = P(x_1 \dots x_i, \ \pi_i = k)$$

$$f_l(i+1) = e_l(x_{i+1}) \sum_k f_k(i) a_{k,l}$$

Viterbi:

$$v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) \, a_{k,l})$$

$$\frac{\partial E(L_1, L_2, ...)}{\partial L_i}$$

Assignment of scores/ "probabilities"

Convex optimization problem

Constraints: enforce rigorous property

Objective function: filter as aggressively as possible

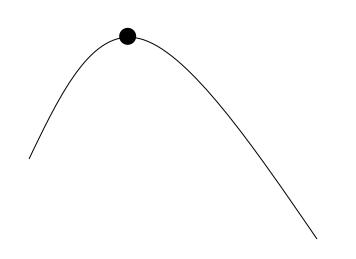
Problem sizes:

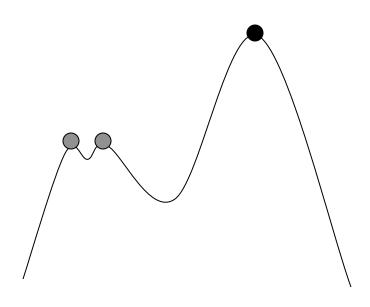
1000-10000 variables

10000-100000 inequality constraints

"Convex" Optimization

Convex: local max = global max; simple "hill climbing" works Nonconvex:
can be many local maxima,
« global max;
"hill-climbing" fails





Estimated Filtering Efficiency

(139 Rfam 4.0 families)

break even	Filtering fraction	# families (compact)	# families (expanded)	
	< 10-4	105	110	~100x
	10-4 - 10-2	8	17	speedup
brea	.0110	11	3	
N	.1025	2	2	
	.2599	6	4	
	.99 - 1.0	7	3	

Averages 283 times faster than CM

Results: new ncRNAs (?)

Name	# Known	# New
	(BLAST + CM)	(rigorous filter + CM)
Pyrococcus snoRNA	57	123
Iron response element	201	121
Histone 3' element	1004	102*
Retron msr	11	48
Hammerhead I	167	26
Hammerhead III	251	13
U6 snRNA	1462	2
U7 snRNA	312	I
cobalamin riboswitch	170	7

13 other families	5-1107	0
-------------------	--------	---

Results: With additional work

	# with BLAST+CM	# with rigorous filter series + CM	# new	
Rfam tRNA	58609	63767	5158	
Group II intron	5708	6039	331	
tRNAscan-SE (human)	608	729	121	
tmRNA	226	247	21	
Lysine riboswitch	60	71		
And more				

Is there anything more to do?

Rigorous filters can be too cautious

E.g., 10 times slower than heuristic filters

Yet only 1-3% more sensitive

We want to

Run scans faster with minimal loss of sensitivity Know empirically what sensitivity we're losing

Heuristic Filters

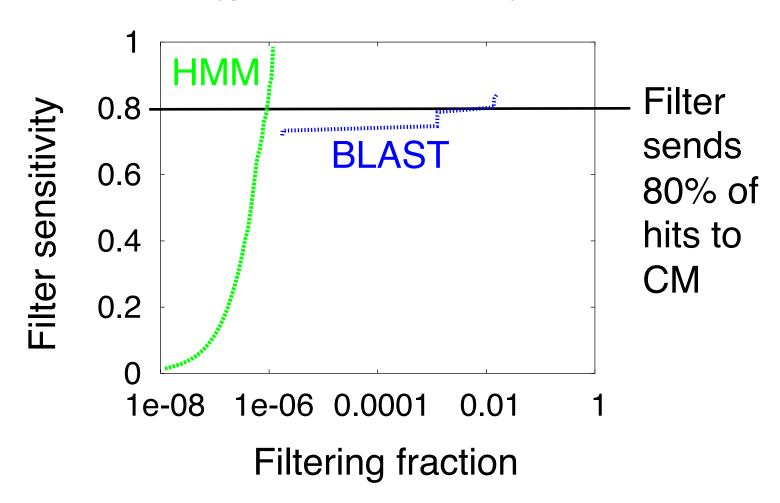
Rigorous filters optimized for worst case Possible to trade improved speed for small loss in sensitivity?

Yes – profile HMMs as before, but optimized for average case

Often 10x faster, modest loss in sensitivity

Heuristic Filters ROC-like curves

(lysine riboswitch)



Heuristic Filters

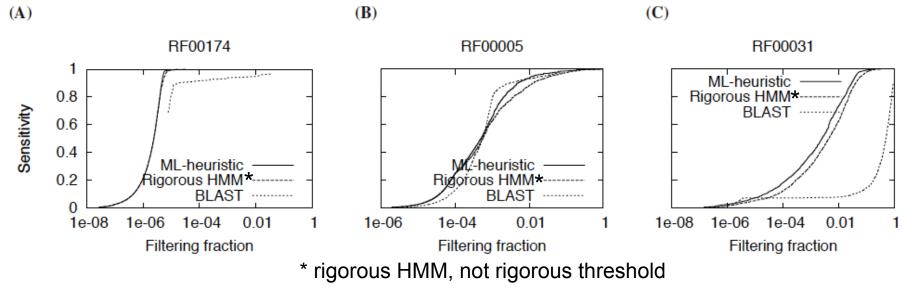
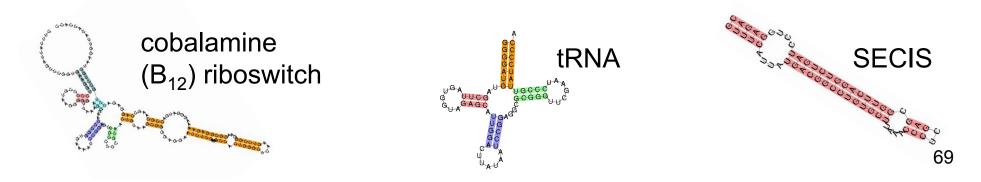


Fig. 1. Selected ROC-like curves. All plot sensitivity against filtering fraction, with filtering fraction in log scale. (A) RF00174 is typical of the other families; the ML-heuristic is slightly better than the rigorous profile HMM, and both often dramatically exceed BLAST. (B) Atypically, in RF00005, BLAST is superior, although only in one region. (C) BLAST performs especially poorly for RF00031. (Recall that rigorous scans were not possible for RF00031, so only \sim 90% of hits are known; see text.) The supplement includes all ROC-like curves, and the inferior ignore-SS.



Software

Ravenna implements both rigorous and heuristic filters

Infernal (engine behind Rfam) implements heuristic filters and some other (important)accelerations

E,g., dynamic "banding" of dynamic programming matrix based on the insight that large deviations from consensus length must have low scores.

CM Search Summary

Still slower than we might like, but dramatic speedup over raw CM is possible with:

No loss in sensitivity (provably), or

Even faster with modest (and estimable) loss in sensitivity

Motif Discovery

RNA Motif Discovery

CM's are great, but where do they come from?

Key approach: comparative genomics

Search for motifs with common secondary structure in a set of functionally related sequences.

Challenges

Three related tasks

Locate the motif regions.

Align the motif instances.

Predict the consensus secondary structure.

Motif search space is huge!

Motif location space, alignment space, structure space.

RNA Motif Discovery

Would be great if: given 100 complete genomes from diverse species, we could automatically find all the RNAs.

State of the art: that's hopeless

Hope: can we exploit biological knowledge to narrow the search space?

RNA Motif Discovery

More promising problem: given a 10-20 unaligned sequences of a few kb, most of which contain instances of one RNA motif of 100-200bp -- find it.

Example: 5' UTRs of orthologous glycine cleavage genes from γ -proteobacteria

Example: corresponding introns of orthogolous vertebrate genes

Orthologs = counterparts in different species

Approaches

Align-First: Align sequences, then look for common structure

Fold-First: Predict structures, then try to align them

Joint: Do both together

"Align First" Approach: Predict Struct from Multiple Alignment

... GA ... UC ...

... GA ... UC ...

... GA ... UC ...

... CA ... UG ...

... CC ... GG ...

... UA ... UA ...

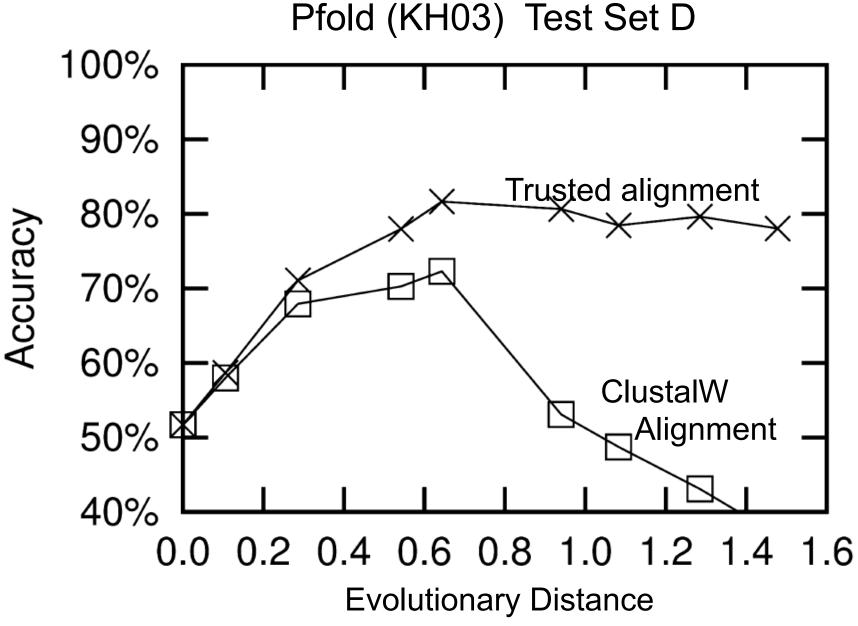
Compensatory mutations reveal structure (core of 'comparative sequence analysis') but usual alignment algorithms penalize them (twice)

Pitfall for sequence-alignmentfirst approach

Structural conservation \neq Sequence conservation Alignment without structure information is unreliable

CLUSTALW alignment of SECIS elements with flanking regions

same-colored boxes should be aligned



Knudsen & Hein, Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, 2003, v 31,3423–3428

Approaches

Align-first: align sequences, then look for common structure

Fold-first: Predict structures, then try to align them

single-seq struct prediction only ~ 60% accurate; exacerbated by flanking seq; no biologically-validated model for structural alignment

Joint: Do both together

Sankoff – good but slow

Heuristic

Our Approach: CMfinder

RNA motifs from unaligned sequences

Simultaneous *local* alignment, folding and CM-based motif description via an EM-style learning procedure

Sequence conservation exploited, but not required

Robust to inclusion of unrelated and/or flanking sequence

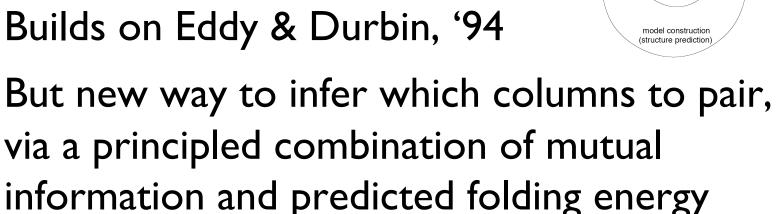
Reasonably fast and scalable

Produces a probabilistic model of the motif that can be directly used for homolog search

Yao, Weinberg & Ruzzo, Bioinformatics, 2006

Alignment → CM → Alignment

Similar to HMM, but slower Builds on Eddy & Durbin, '94



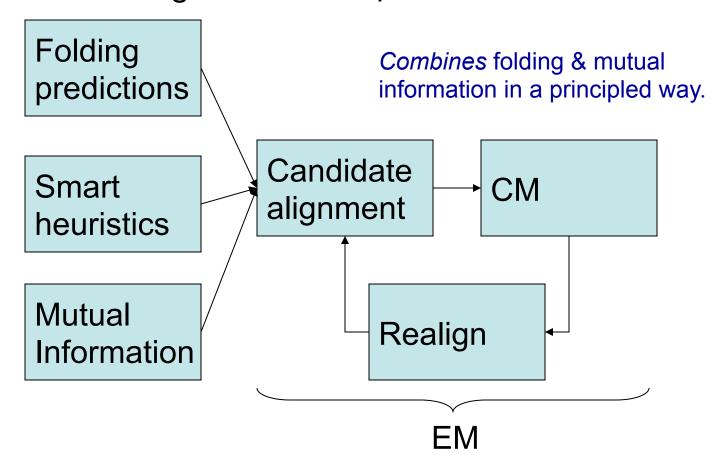
parameter

covariance model

And, it's local, not global, alignment (harder)

CMFinder

Simultaneous alignment, folding & motif description Yao, Weinberg & Ruzzo, Bioinformatics, 2006



Initial Alignment Heuristics

fold sequences separately candidates: regions with low folding energy compare candidates via "tree edit" algorithm find best "central" candidates & align to them BLAST anchors

Structure Inference

Part of M-step is to pick a structure that maximizes data likelihood

We combine:

mutual information

position-specific priors for paired/unpaired

(based on single sequence thermodynamic folding predictions)

intuition: for similar seqs, little MI; fall back on single-sequence folding predictions

data-dependent, so not strictly Bayesian

Details: see paper

 L_i = column i; $\sigma = (\alpha, \beta)$ the 2^{ary} struct, α = unpaired, β = paired cols

Our goal is to find $\hat{\sigma} = \arg \max_{\sigma} P(D, \sigma)$. Assuming independence of non-base paired columns, then

$$P(D|\sigma) = \prod_{k \in \alpha} P(L_k) \prod_{(i,j) \in \beta} P(L_i L_j)$$
 (2)

$$= \prod_{1 \le k \le l} P(L_k) \prod_{(i,j) \in \beta} \frac{P(L_i L_j)}{P(L_i)P(L_j)}$$
(3)

Let

$$I_{ij} = \log \frac{P(L_i L_j)}{P(L_i)P(L_j)}$$

With MLE params, I_{ij} is the *mutual information* between cols i and j

Let s_i be the prior for column i to be single stranded, and p_{ij} the prior for columns i, j to be base paired, then $P(\sigma) = \prod_{k \in \alpha} s_k \prod_{(i,j) \in \beta} p_{ij}$, and $P(D,\sigma)$ can be rewritten as

$$P(D,\sigma) = P(D|\sigma)P(\sigma)$$

$$= \prod_{1 \le k \le l} P(L_k)s_k \prod_{(i,j) \in \beta} \frac{P(L_iL_j)}{P(L_i)P(L_j)} \frac{p_{ij}}{s_is_j}$$
(4)

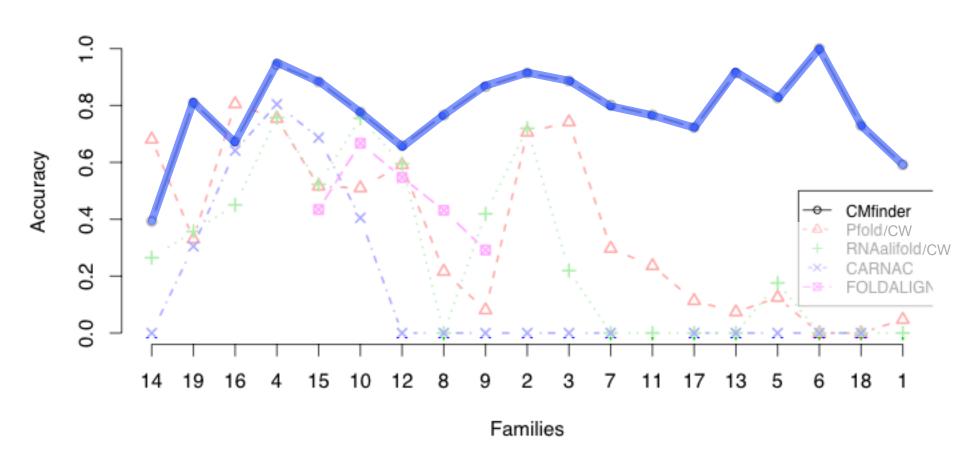
Let

$$K_{ij} = \log\left(\frac{P(L_iL_j)}{P(L_i)P(L_j)}\frac{p_{ij}}{s_is_j}\right) = I_{ij} + \log\frac{p_{ij}}{s_is_j},$$

then the maximum likelihood structure σ maximizes $\sum_{(i,j)\in\beta} K_{ij}$. Can find it via a simple dynamic programming alg.

CMfinder Accuracy

(on Rfam families with flanking sequence)



Summary of Rfam test families and results

ID	Family	Rfam ID	#seqs	%id	length	#hp	CMfinder	CW/Pfold	CW/RNAalifold	Carnac	Foldalign	ComRNA
1	Cobalamin	RF00174	71	49	216	4	0.59	0.05	0	X	-	0
2	ctRNA_pGA1	RF00236	17	74	83	2	0.91	0.70	0.72	0	0.86	0
3	Entero_CRE	RF00048	56	81	61	1	0.89	0.74	0.22	0	-	0
4	Entero_OriR	RF00041	35	77	73	2	0.94	0.75	0.76	0.80	0.52	0.52
5	glmS	RF00234	14	58	188	4	0.83	0.12	0.18	0	-	0.13
6	Histone3	RF00032	63	77	26	1	1	0	0	0	-	0
7	Intron_gpII	RF00029	75	55	92	2	0.80	0.30	0	0	-	0
8	IRE	RF00037	30	68	30	1	0.77	0.22	0	0	0.38	0
9	let-7	RF00027	9	69	84	1	0.87	80.0	0.42	0	0.71	0.78
10	lin-4	RF00052	9	69	72	1	0.78	0.51	0.75	0.41	0.65	0.24
11	Lysine	RF00168	48	48	183	4	0.77	0.24	0	X	-	0
12	mir-10	RF00104	11	66	75	1	0.66	0.59	0.60	0	0.48	0.33
13	Purine	RF00167	29	55	103	2	0.91	0.07	0	0	-	0.27
14	RFN	RF00050	47	66	139	4	0.39	0.68	0.26	0	-	0
15	Rhino_CRE	RF00220	12	71	86	1	0.88	0.52	0.52	0.69	0.41	0.61
16	s2m	RF00164	23	80	43	1	0.67	0.80	0.45	0.64	0.63	0.29
17	S_box	RF00162	64	66	112	3	0.72	0.11	0	0	-	0
18	SECIS	RF00031	43	43	68	1	0.73	0	0	0	-	0
19	Tymo_tRNA-like	RF00233	22	72	86	4	0.81	0.33	0.36	0.30	0.80	0.48
				Average Accuracy:		0.79	0.36	0.28	0.17	0.60	0.19	
				Average Specificity:			0.81	0.42	0.57	0.83	0.60	0.65
	Average Sensitivity:						0.77	0.36	0.23	0.13	0.61	0.17

Discovery in Bacteria

OPEN ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

A Computational Pipeline for High-Throughput Discovery of *cis*-Regulatory Noncoding RNA in Prokaryotes

Zizhen Yao^{1*}, Jeffrey Barrick^{2¤}, Zasha Weinberg³, Shane Neph^{1,4}, Ronald Breaker^{2,3,5}, Martin Tompa^{1,4}, Walter L. Ruzzo^{1,4}

Published online 9 July 2007

Nucleic Acids Research, 2007, Vol. 35, No. 14 4809-4819 doi:10.1093/nar/gkm487

Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline

Zasha Weinberg^{1,*}, Jeffrey E. Barrick^{2,3}, Zizhen Yao⁴, Adam Roth², Jane N. Kim¹, Jeremy Gore¹, Joy Xin Wang^{1,2}, Elaine R. Lee¹, Kirsten F. Block¹, Narasimhan Sudarsan¹, Shane Neph⁵, Martin Tompa^{4,5}, Walter L. Ruzzo^{4,5} and Ronald R. Breaker^{1,2,3}

Predicting New cis-Regulatory RNA Elements

Goal:

Given unaligned UTRs of coexpressed or orthologous genes, find common structural motifs

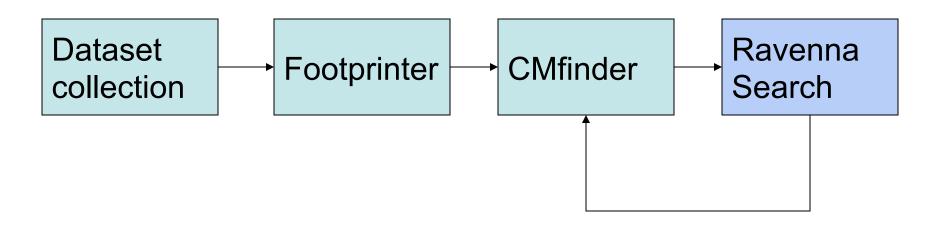
Difficulties:

Low sequence similarity: alignment difficult

Varying flanking sequence

Motif missing from some input genes

Use the Right Data; Do Genome Scale Search



Right Data: Why/How

We can recognize, say, 5-10 good examples amidst 20 extraneous ones (but not 5 in 200 or 2000) of length 1k or 10k (but not 100k)

Regulators often near regulatees (protein coding genes), which are usually recognizable cross-species So, look near similar genes ("homologs")

Many riboswitches, e.g., are present in ~5 copies per genome

(Not strategy used in vertebrates - 1000x larger genomes)

Approach

Get bacterial genomes

For each gene, get 10-30 close orthologs (CDD)

Find most promising genes, based on conserved sequence motifs (Footprinter)

From those, find structural motifs (CMfinder)

Genome-wide search for more instances (Ravenna)

Expert analyses (Breaker Lab, Yale)

Processing Times

Input from ~70 complete Firmicute genomes available in late 2005-early 2006, totaling ~200 megabases

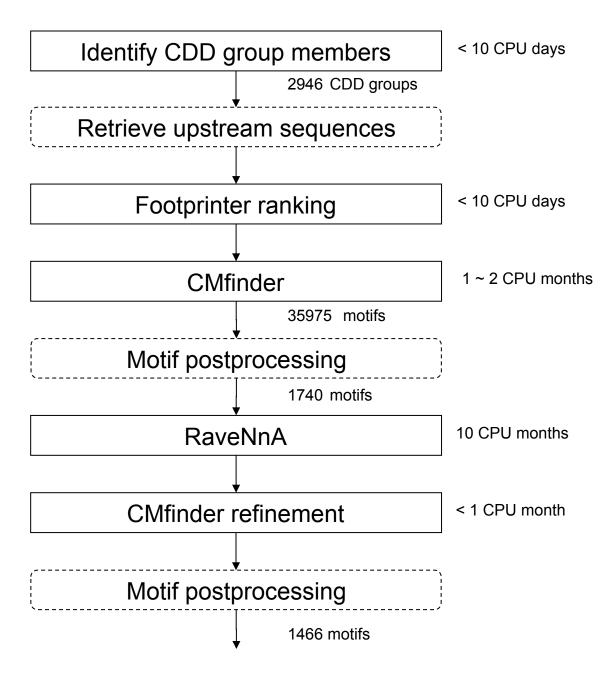


Table I: Motifs that correspond to Rfam families

	Rank		Rank		Score		Score					CDD	Rfam
RAV	CMF	FP		RAV (CMF	ID	Gene	Descriptio n					
0	43	107	3400	367	11	9904	IIvB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box				
1	10	344	3115	96	22	13174	COG3859	Predicted membrane protein	RF00059 THI				
2	77	1284	2376	112	6	11125	MetH	Methionine synthase I specific DNA methylase	RF00162 S_box				
3	0	5	2327	30	26	9991	COG0116	Predicted N6-adenine-specific DNA methylase	RF00011				
4	6	66	2228	49	18	4383	DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RNaseP_bact_b RF00050 RFN				
7	145	952	1429	51	7	10390	GuaA	GMP synthase	RF00167 Purine				
8	17	108	1322	29	13	10732	GcvP	Glycine cleavage system protein P	RF00504 Glycine				
9	37	749	1235	28	7	24631	DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bact				
10	123	1358	1222	36	6	10986	CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamin				
20	137	1133	899	32	7	9895	LysA	Diaminopimelate decarboxylase	RF00168 Lysine				
21	36	141	896	22	10	10727	TerC	Membrane protein TerC	RF00080 yybP-ykoY				
39	202	684	664	25	5	11945	MgtE	Mg/Co/Ni transporter MgtE	RF00380 ykoK				
40	26	74	645	19	18	10323	GlmS	Glucosamine 6-phosphate synthetase	RF00234 glmS				
53	208	192	561	21	5	10892	OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ¹				
122	99	239	413	10	7	11784	EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkD				
255	392	281	268	8	6	10272	COG0398	Uncharacterized conserved protein	RF00023 tmRNA				

Table 1: Motifs that correspond to Rfam families. "Rank": the three columns show ranks for refined motif clusters after genome scans ("RAV"), CMfinder motifs before genome scans ("CMF"), and FootPrinter results ("FP"). We used the same ranking scheme for RAV and CMF. "Score"

	M	embershi	р		Overlap		Structure			
		#	Sn	Sp	nt	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	0.74 ¹	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	0.56^{1}	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.78

Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments.

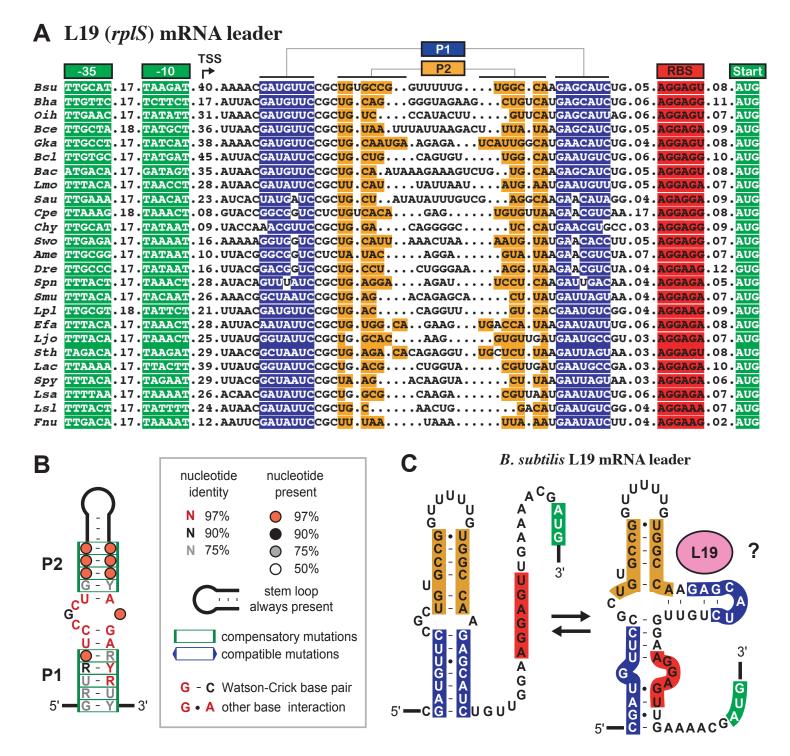
Membership: # of seqs in overlap between our predictions and Rfam's, the sensitivity (Sn) and specificity (Sp) of our membership predictions. Overlap: the avg len of overlap between our predictions and Rfam's (nt), the fractional lengths of the overlapped region in Rfam's predictions (Sn) and in ours (Sp). Structure: the avg # of correctly predicted canonical base pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of our predictions. ¹After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increased to 76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%.

Table 3: High ranking motifs not found in Rfam

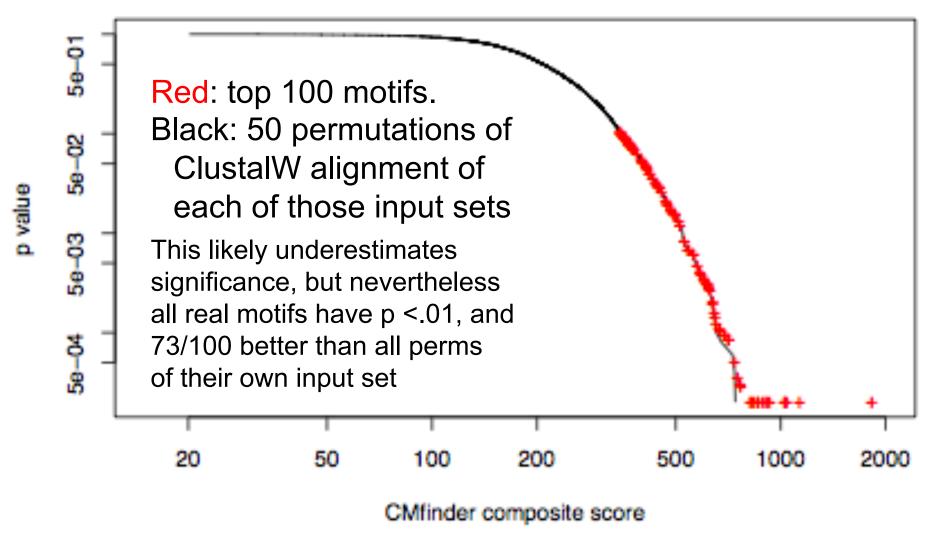
Rank	#	CDD	Gene: Description	Annotation
6	69	28178	DHOase IIa: Dihydroorotase	PyrR attenuator [22]
15	33		RpIL: Ribosomal protein L7/L1	L10 r-protein leader; see Supp
19	36		RpsF: Ribosomal protein S6	S6 r-protein leader
22	32			6S RNA [25]
27	27	9926	RpsJ: Ribosomal protein S10	S10 r-protein leader; see Supp
29	11	15150	Resolvase: N terminal domain	
31	31	10164	InfC: Translation initiation factor 3	IF-3 r-protein leader; see Supp
41	26	10393	RpsD: Ribosomal protein S4 and related proteins	S4 r-protein leader; see Supp [30]
44	30	10332	GroL: Chaperonin GroEL	HrcA DNA binding site [46]
46	33	25629	Ribosomal L21p: Ribosomal prokaryotic L21 protein	L21 r-protein leader; see Supp
50	11	5638	Cad: Cadmium resistance transporter	[47]
51	19	9965	RpIB: Ribosomal protein L2	S10 r-protein leader
55	7	26270	RNA pol Rpb2 1: RNA polymerase beta subunit	
69	9	13148	COG3830: ACT domain-containing protein	
72	28		Ribosomal S2: Ribosomal protein S2	S2 r-protein leader
74	9	9924	RpsG: Ribosomal protein S7	S12 r-protein leader
86			COG2984: ABC-type uncharacterized transport system	
	19		CtsR: Firmicutes transcriptional repressor of class III	CtsR DNA binding site [48]
		23019	Formyl trans N: Formyl transferase	
103	8	9916	PurE: Phosphoribosylcarboxyaminoimidazole	
117			COG4129: Predicted membrane protein	
120	10	10075	RpIO: Ribosomal protein L15	L15 r-protein leader
121			RpmJ: Ribosomal protein L36	IF-1 r-protein leader
129			Cna B: Cna protein B-type domain	
130			Ribosomal S12: Ribosomal protein S12	S12 r-protein leader
131			Ribosomal L4: Ribosomal protein L4/L1 family	L3 r-protein leader
136	7		COG0742: N6-adenine-specific methylase	ylbH putative RNA motif [4]
140			Pencillinase R: Penicillinase repressor	Blal, Mecl DNA binding site [49]
157			Ribosomal S9: Ribosomal protein S9/S16	L13 r-protein leader; Fig 3
160			Ribosomal L19: Ribosomal protein L19	L19 r-protein leader; Fig 2
164	6		GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose	
174			COG4708: Predicted membrane protein	
176			COG0325: Predicted enzyme with a TIM-barrel fold	
182			RpmF: Ribosomal protein L32	L32 r-protein leader
187			LDH: L-lactate dehydrogenases	
190			CspR: Predicted rRNA methylase	
194	9	10353	FusA: Translation elongation factors	EF-G r-protein leader

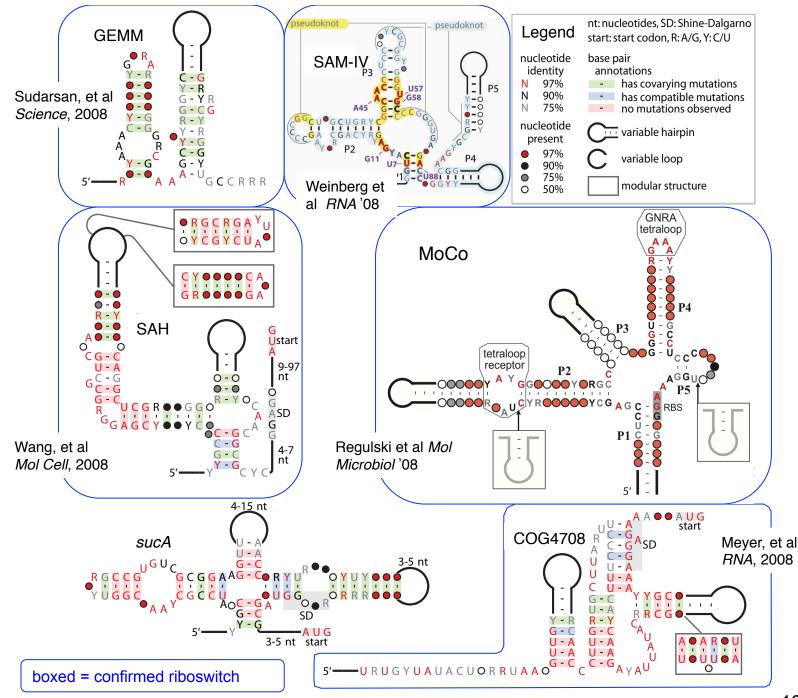
Example: Ribosomal Autoregulation

9 represses L19



Estimating Motif Significance





Vertebrate ncRNAs

Some Results

Human Predictions

Evofold

S Pedersen, G Bejerano, A Siepel, K Rosenbloom, K Lindblad-Toh, ES Lander, J Kent, W Miller, D Haussler, "Identification and classification of conserved RNA secondary structures in the human genome."

PLoS Comput. Biol., 2, #4 (2006) e33.

48,479 candidates (~70% FDR?)

FOLDALIGN

E Torarinsson, M Sawera JH. Havgaard, M Fredrickin J Gorodkin, "Thousands decree ponding human and house genomic regions unalignable in primary sequence cortain formon RNA structure."

Grand Res., 16, #7 (2006) 885-9.

1800 candidates from 36970 (of 100,000) pairs

RNAz

S Washietl, IL Hofacker, I Lukesser, A Hutenhofer, PF Stadler, "Mapping of conserved RNA secondary structures predict thousands of functional noncoding RNAs in the Luceau granome."

Nat, Biotech J., 23, #11 (2005) 1383-90.

22.000 structured RNA elements

1000 conserved across all vertebrates.

~1/3 in introns of known genes, ~1/6 in UTRs

~1/2 located far from any known gene

CMfinder

Torarinsson, Yao, Wiklund, Bramsen, Hansen, Kjems, Tommerup, Ruzzo and Gorodkin. Comparative genomics beyond sequence based alignments: RNA structures in the ENCODE regions. *Genome Research*, Feb 2008, 18(2):242-251 PMID: 18096747

6500 candidates in ENCODE alone (better FDR, but still high)

Some details below

ncRNA discovery in Vertebrates

Natural approach: Align, Fold, Score Previous studies focus on highly conserved

regions (Washietl, Pedersen et al. 2007)

Evofold (Pedersen et al. 2006)

RNAz (Washietl et al. 2005)

We explore regions with weak sequence conservation, where alignments aren't trustworthy

Thousands of candidates

Thousands more

CMfinder Search in Vertebrates

Extract ENCODE* Multiz alignments
Remove exons, most conserved elements.
56017 blocks, 8.7M bps.

Trust 17-way alignment for orthology, not for detailed alignment

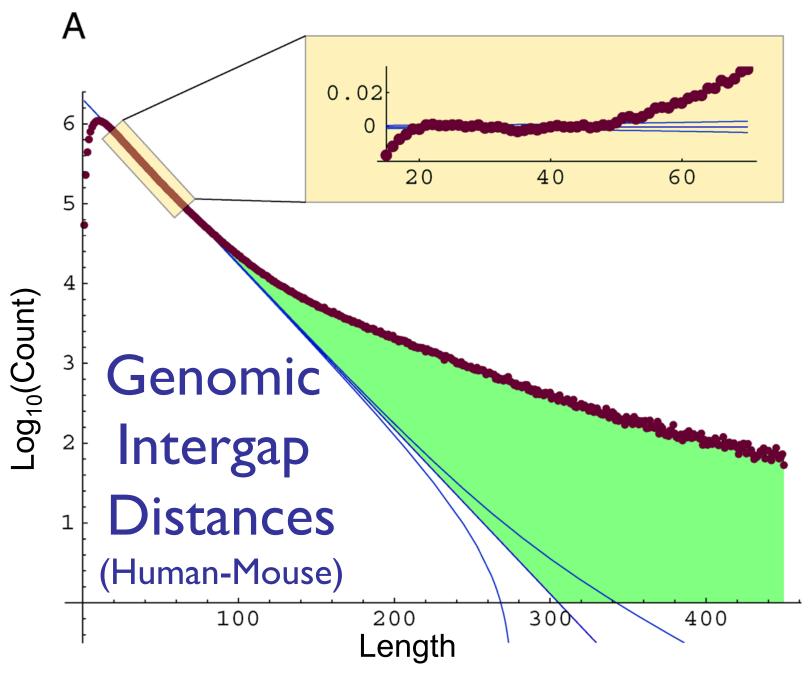
Apply CMfinder to both strands.

10,106 predictions, 6,587 clusters.

High false positive rate, but still suggests 1000's of RNAs.

(We've applied CMfinder to whole human genome: many 100's of CPU years. Analysis in progress.)

^{*} ENCODE: deeply annotated 1% of human genome



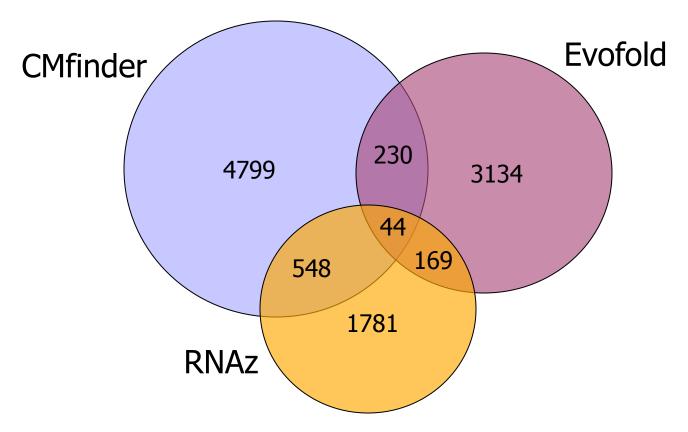
Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model Gerton Lunter, Chris P. Ponting, Jotun Hein, PLoS Comput Biol 2006, 2(1): e5.

Overlap w/ Indel Purified Segments

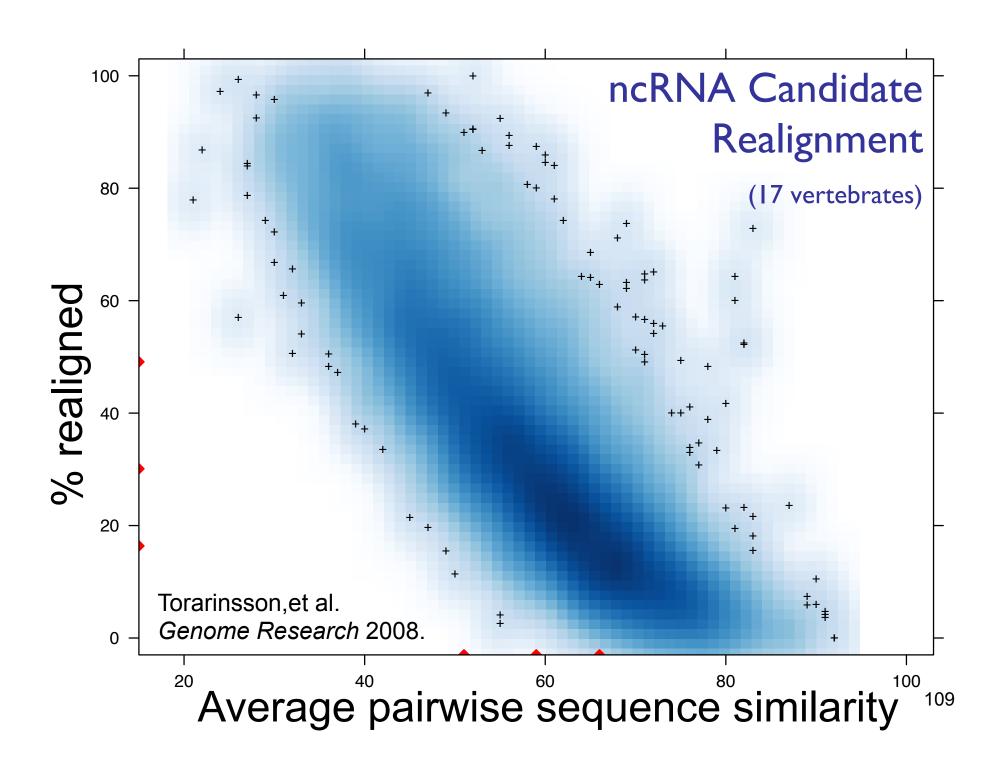
IPS presumed to signal purifying selection
Majority (64%) of candidates have >45% G+C
Strong P-value for their overlap w/ IPS

G+C	data	Р	Ν	Expected	Observed	P-value	%
0-35	igs	0.062	380	23	24.5	0.430	5.8%
35-40	igs	0.082	742	61	70.5	0.103	11.3%
40-45	igs	0.082	1216	99	129.5	0.00079	18.5%
45-50	igs	0.079	1377	109	162.5	5.16E-08	20.9%
50-100	igs	0.070	2866	200	358.5	2.70E-31	43.5%
all	igs	0.075	6581	491	747.5	1.54E-33	100.0%

Comparison with Evofold, RNAz



Small overlap (w/ highly significant p-values) emphasizes complementarity Strong association with "Indel purified segments" - I.e., apparently under selection Strong association with known genes

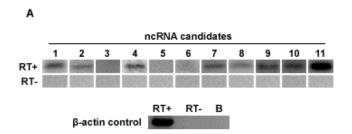


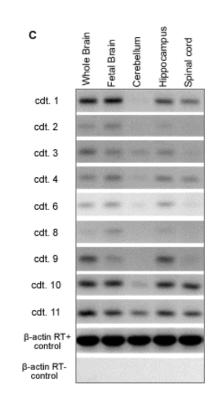
Alignment Matters

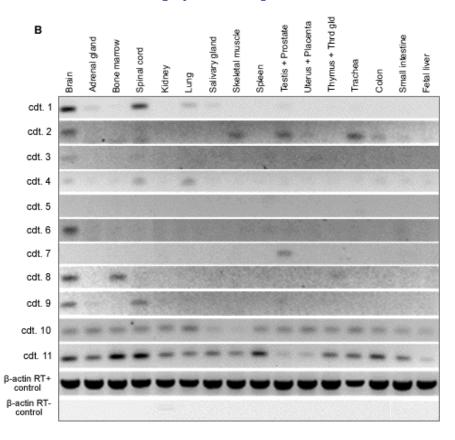
```
The original MULTIZ alignment without flanking regions. RNAz Score: 0.132 (no RNA)
      GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGGGT----CTTAACAGTATGACCAAAAACTGAAGT
Human
Chimp
      GGACATTTCAATGCGGGCTC-ATGGGGCTGTGAAGCCAAGAGCT----ATTAACACTATGACCAAGGACTGAAAT1
Cow
      GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAACCGGGAGCT----CTTAATGCTGTGACCAAAGATTGAAGT1
      GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAACCAAGGGCT----CTTAACTCTGTGACCAAATATTAGAGT1
Dog
Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCAAGACT----CTTAACTGTATGCCCAAAGATTAAAGT1
Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAACCAAGGGTAGGTCTTAACCACAGGACTGAAGT
       ((((((....)((((((....)((.....)))...)))....)))
Str
The local CMfinder re-alignment of the MULTIZ block. RNAz Score: 0.709 (RNA)
      GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCA----AGAGGTCTTAACAGTATGACCAAAAACTGAAC
Human
Chimp
      GGACATTTCAATGCGGGCTC-ATGGGGCTGT-GAAGCCA----AGAGCTATTAACACTATGACCAAGGACTGAA!
      GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAA-CCG----GGAGCTCTTAATGCTGTGACCAAAGATTGAAG
Cow
      GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAA-CCA----AGGGCTCTTAACTCTGTGACCAAATATTAGAG
Dog
Rabbit GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTCA----AGAACTCTTAACTGTATGCCCAAAGATTAAAC
Rhesus GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCAAGAGG-TAGGTCTTAACAGTATAACCAAAGACTGAAG
```

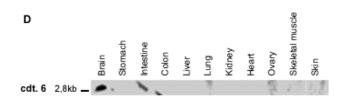
Str

10 of 11 top (differentially) expressed









Summary

After careful control of FDR,

Widespread structured RNA prediction

Evidence for conservation

Evidence for expression

Evidence for elevated expression of structured vs non-structured in CDS contexts

Hypothesis: cis-regulatory roles at these loci

ncRNA Summary

ncRNA is a "hot" topic

For family homology modeling: CMs

Training & search like HMM (but slower)

Dramatic acceleration possible

Automated model construction possible

New computational methods yield new discoveries

Many open problems