CSE P 590 B Autumn 2014 4: MLE, EM

Outline

HW#2 Discussion

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

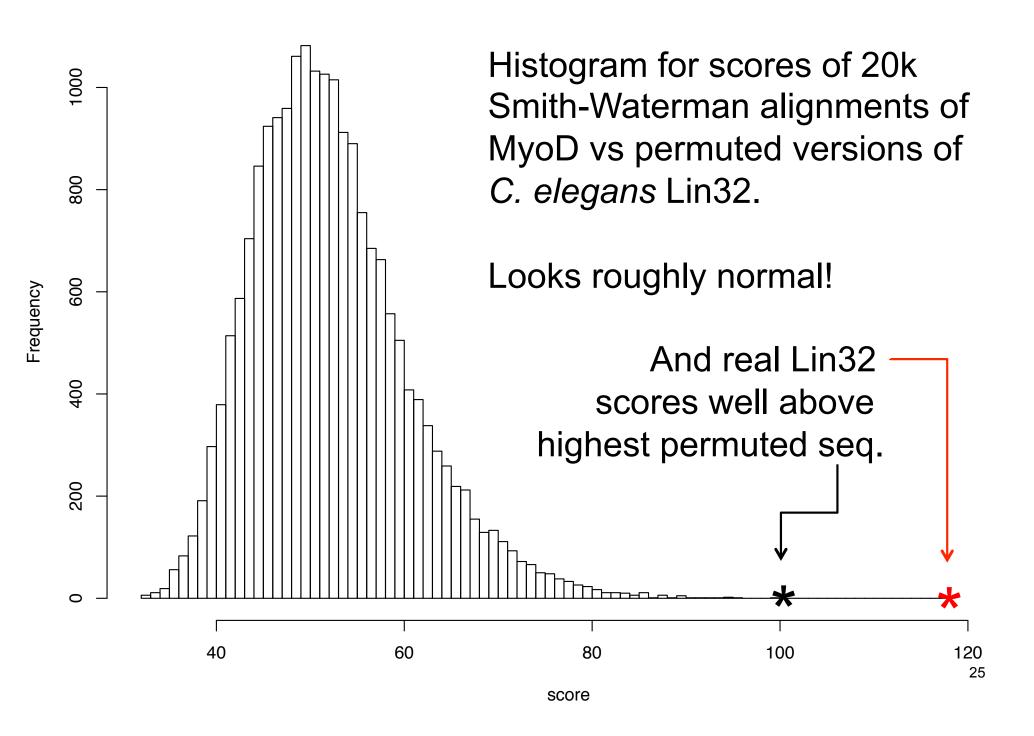
Next: Motif description & discovery

HW # 2 Discussion

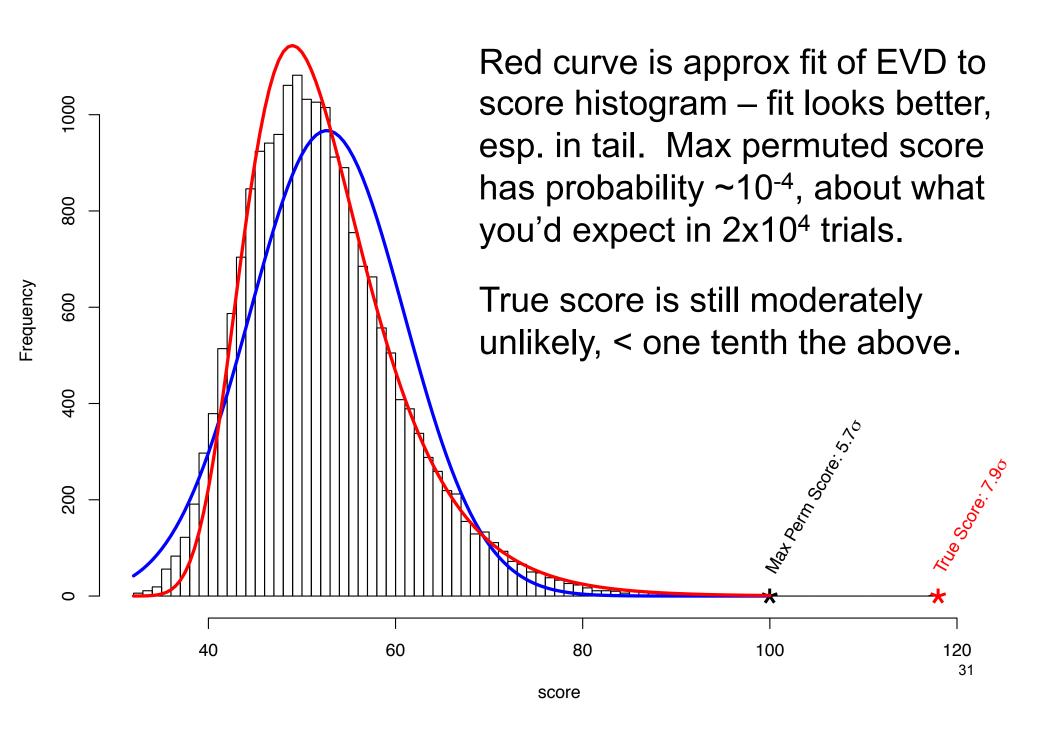
	Species	Name	Description	Access -ion	score to #I
ı	Homo sapiens (Human)	MYODI_HUMAN	Myoblast determination protein I	P15172	1709
2	Homo sapiens (Human)	TALI_HUMAN	T-cell acute lymphocytic leukemia protein I (TAL-I)	P17542	143
3	Mus musculus (Mouse)	MYODI_MOUSE	Myoblast determination protein I	P10085	1494
4	Gallus gallus (Chicken)	MYODI_CHICK	Myoblast determination protein I homolog (MYODI homolog)	P16075	1020
5	Xenopus laevis (African clawed frog)	MYODA_XENLA	Myoblast determination protein I homolog A (Myogenic factor I)	P13904	978
6	Danio rerio (Zebrafish)	MYODI_DANRE	Myoblast determination protein I homolog (Myogenic factor I)	Q90477	893
7	Branchiostoma belcheri (Amphioxus)	Q8IU24_BRABE	MyoD-related	Q8IU24	428
8	Drosophila melanogaster (Fruit fly)	MYOD_DROME	Myogenic-determination protein (Protein nautilus) (dMyd)	P22816	368
9	Caenorhabditis elegans	LIN32_CAEEL	Protein lin-32 (Abnormal cell lineage protein 32)	Q10574	118
10	Homo sapiens (Human)	SYFM_HUMAN	Phenylalanyl-tRNA synthetase, mitochondrial	O95363	56

http://www.rcsb.org/pdb/explore/jmol.do?structureId=IMDY&bionumber=I

Permutation Score Histogram vs Gaussian



Permutation Score Histogram vs Gaussian



Probability Basics, I

Ex.

Ex.

Sample Space

$$\{1,2,\ldots,6\}$$

 \mathbb{R}

Distribution

$$p_1, \dots, p_6 \ge 0; \sum_{1 \le i \le 6} p_i = 1$$

$$f(x) >= 0; \int_{\mathbb{R}} f(x)dx = 1$$

e.g.

$$p_1 = \dots = p_6 = 1/6$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

pdf, not probability

Probability Basics, II

Ex.

Ex.

$$E(g) = \sum_{1 \le i \le 6} g(i)p_i$$

$$E(g) = \int_{\mathbb{R}} g(x)f(x)dx$$

Population

mean

$$\mu = \sum_{1 \le i \le 6} i p_i$$

$$\mu = \int_{\mathbb{R}} x f(x) dx$$

variance

$$\sigma^2 = \sum_{1 \le i \le 6} (i - \mu)^2 p_i$$

$$\sigma^2 = \int_{\mathbb{R}} (x - \mu)^2 f(x) dx$$

Sample

mean

$$\bar{x} = \sum_{1 \le i \le n} x_i / n$$

variance

$$\bar{s}^2 = \sum_{1 \le i \le n} (x_i - \bar{x})^2 / n$$

Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Given: independent samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$

Goal: estimate θ .

E.g.: Given sample HHTTTTTHTHTTTHH of (possibly biased) coin flips, estimate

 θ = probability of Heads

 $f(x|\theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

```
P(x \mid \theta): Probability of event x given model \theta
Viewed as a function of x (fixed \theta), it's a probability
E.g., \Sigma_x P(x \mid \theta) = I
```

Viewed as a function of θ (fixed x), it's called likelihood

E.g., Σ_{θ} P(x | θ) can be anything; relative values of interest.

E.g., if θ = prob of heads in a sequence of coin flips then $P(HHTHH \mid .6) > P(HHTHH \mid .5)$,

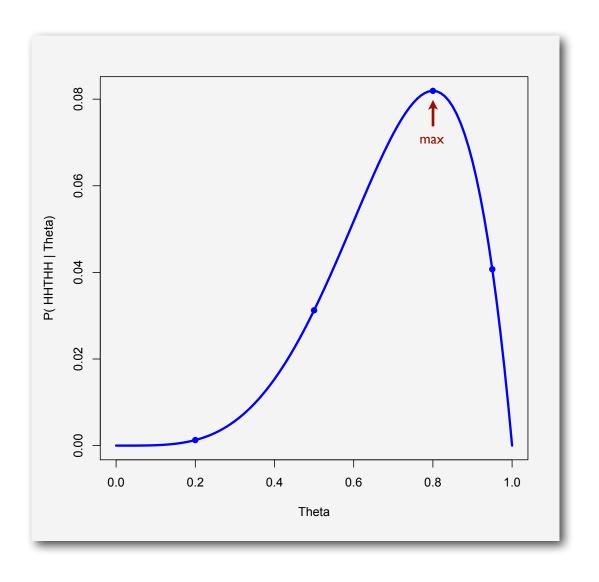
I.e., event HHTHH is more likely when $\theta = .6$ than $\theta = .5$

And what θ make HHTHH most likely?

Likelihood Function

P(HHTHH | θ): Probability of HHTHH, given P(H) = θ :

θ	$\theta^4(1-\theta)$
0.2	0.0013
0.5	0.0313
0.8	0.0819
0.95	0.0407



Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed

Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

n independent coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $\theta = \text{probability of heads}$

$$L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$$

$$\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$$

$$\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$$

Setting to zero and solving:

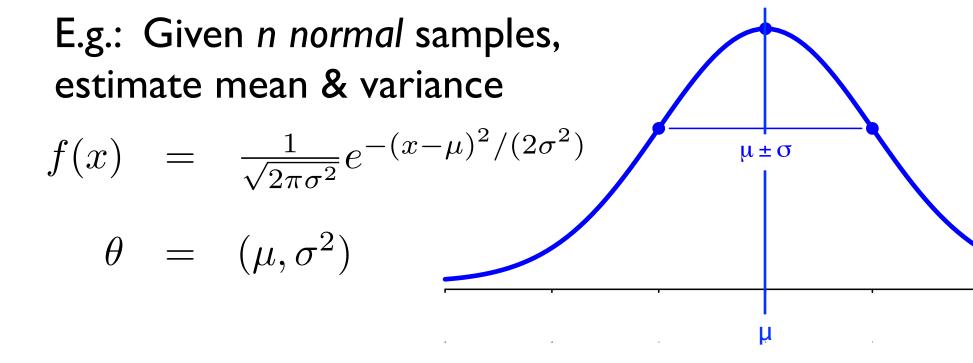
$$\hat{\theta} = \frac{n_1}{n}$$

Observed fraction of successes in sample is MLE of success probability in population

(Also verify it's max, not min, & not better on boundary)

Parameter Estimation

Given: indp samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$, estimate: θ .



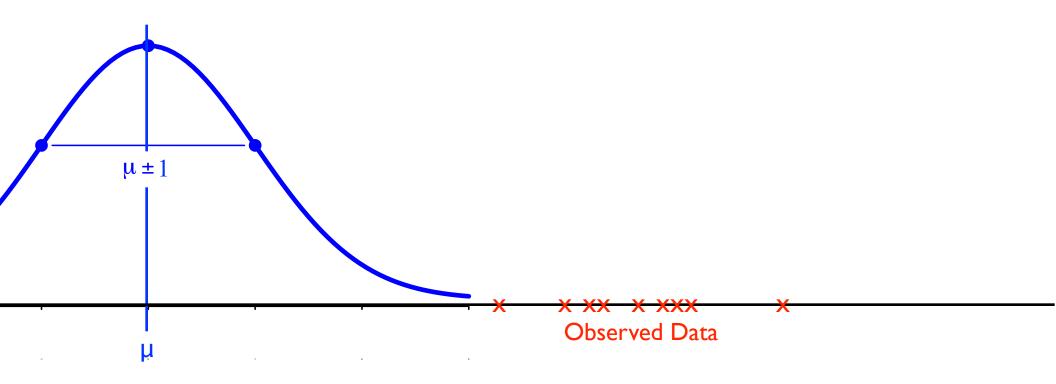
Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^2 = 1$

X XXX XXXX X

Observed Data

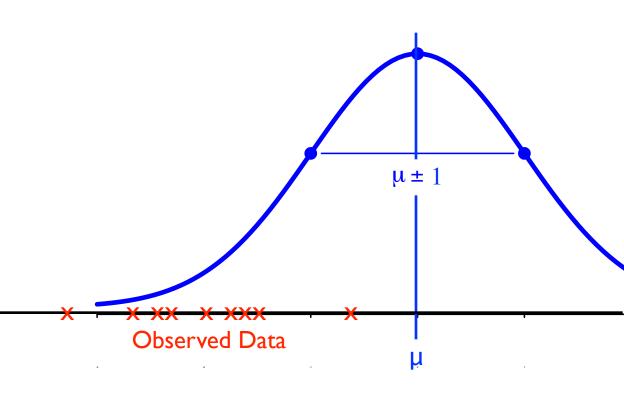
Which is more likely: (a) this?

 μ unknown, $\sigma^2 = 1$



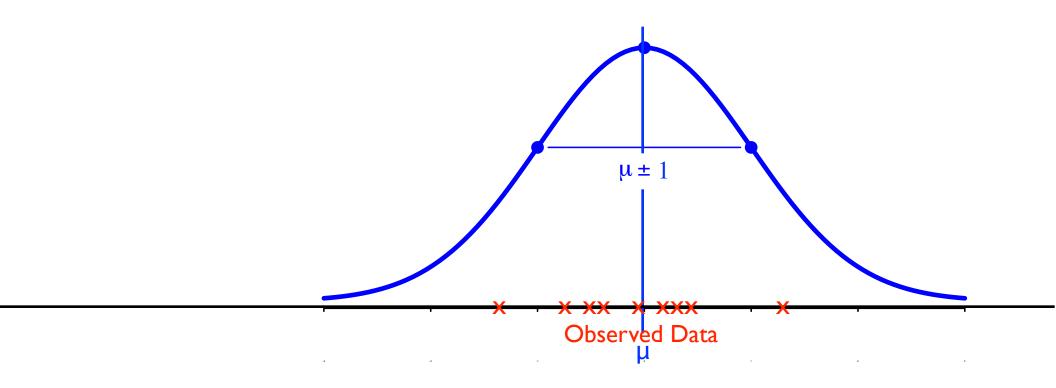
Which is more likely: (b) or this?

 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

 μ unknown, $\sigma^2 = 1$



Which is more likely: (c) or this?

 μ unknown, $\sigma^2 = 1$

Looks good by eye, but how do I optimize my estimate of μ ?



Ex. 2: $x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu \text{ unknown}$

$$L(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$$

$$\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi) - \frac{(x_i - \theta)^2}{2}$$

$$\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta)$$

And verify it's max, not min & not better on boundary

$$dL/d\theta = 0$$

$$-3$$

$$-4$$

$$-5$$

$$-6$$

$$-7$$

$$2$$

$$3$$

$$4$$

$$5$$

$$= \left(\sum_{i=1}^{n} x_i\right) - n\theta = 0$$

$$\widehat{\theta} = \left(\sum_{i=1}^{n} x_i\right) / n = \overline{x}$$

Sample mean is MLE of population mean

Hmm ..., density # probability

So why is "likelihood" function equal to product of densities?? (Prob of seeing any specific x_i is 0, right?)

- a) for maximizing likelihood, we really only care about relative likelihoods, and density captures that
- b) has desired property that likelihood increases with better fit to the model

and/or

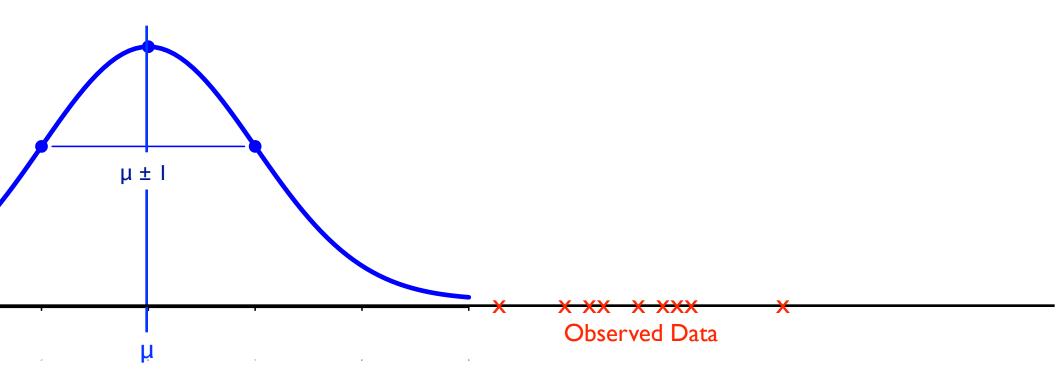
c) if density at x is f(x), for any small $\delta > 0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is constant wrt θ , so it just drops out of $d/d\theta \log L(...) = 0$.

Ex3: I got data; a little birdie tells me it's normal (but does *not* tell me μ , σ^2)

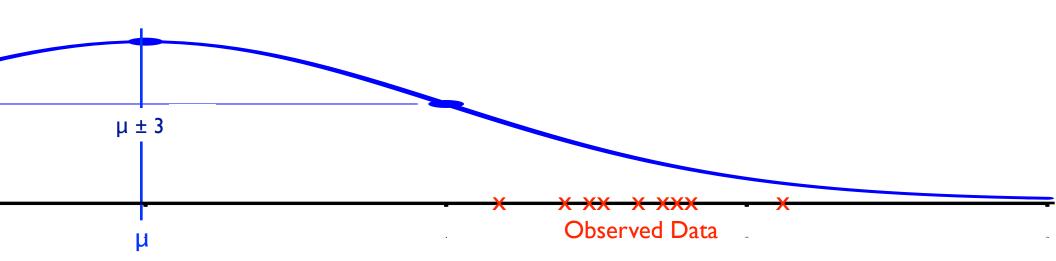
X XXX XXXX X

Observed Data

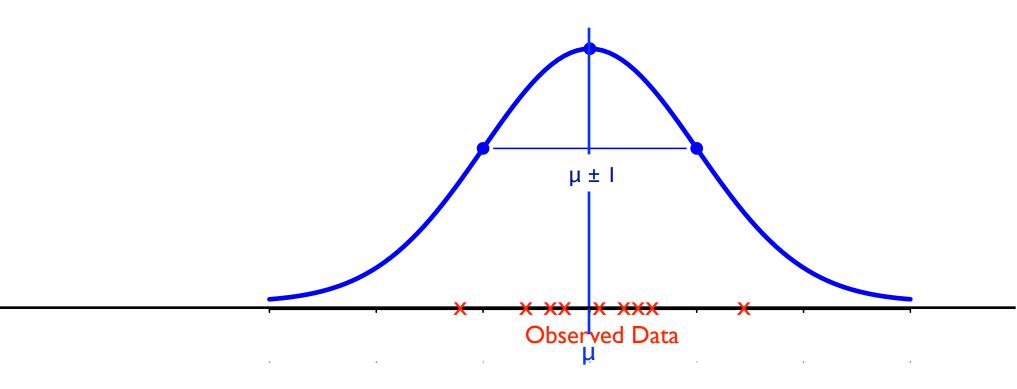
Which is more likely: (a) this?



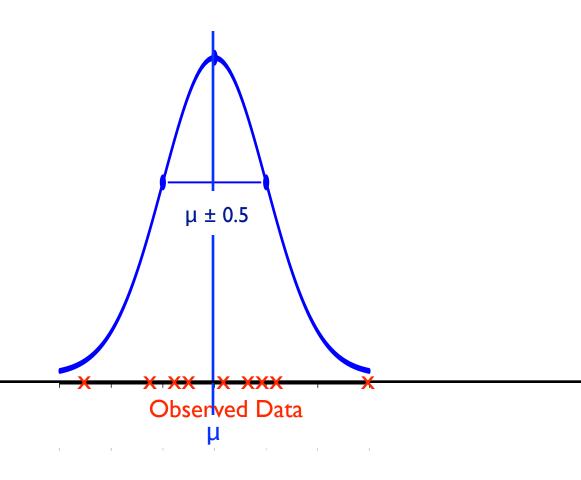
Which is more likely: (b) or this?



Which is more likely: (c) or this?



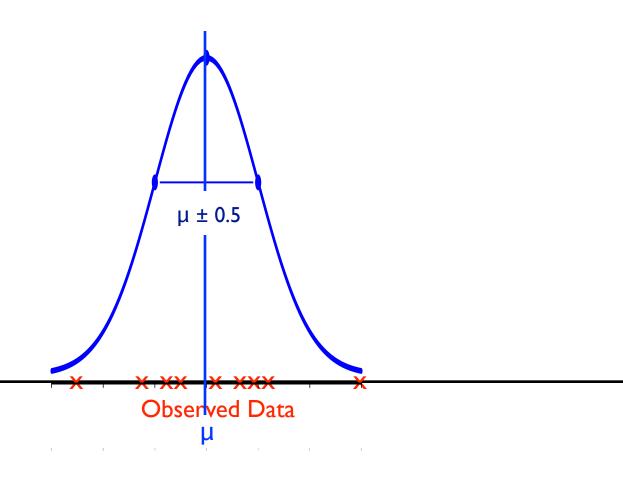
Which is more likely: (d) or this?



Which is more likely: (d) or this?

 μ , σ^2 both unknown

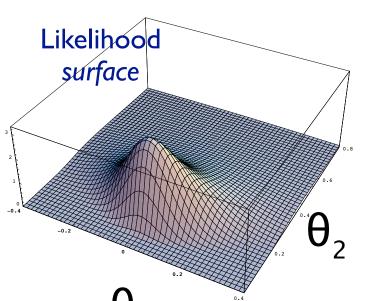
Looks good by eye, but how do I optimize my estimates of $\mu \& \sigma^2$?



Ex 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n \frac{(x_i - \theta_1)}{\theta_2} = 0$$



$$\widehat{\theta}_1 = \left(\sum_{i=1}^n x_i\right)/n = \overline{x}$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial\theta_1=0$ equation 29

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}$$

$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{i=1}^n -\frac{1}{2} \frac{2\pi}{2\pi\theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$

$$\widehat{\theta}_2 = \left(\sum_{i=1}^n (x_i - \widehat{\theta}_1)^2\right) / n = \overline{s}^2$$

Sample variance is MLE of population variance

Summary

MLE is one way to estimate parameters from data

You choose the *form* of the model (normal, binomial, ...)

Math chooses the *value(s)* of parameter(s)

Defining the "Likelihood Function" (based on the form of the model) is often the critical step; the math/algorithms to optimize it are generic

Often simply $(d/d\theta)(\log Likelihood) = 0$

Has the intuitively appealing property that the parameters maximize the *likelihood* of the observed data; basically just assumes your sample is "representative"

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being unbiased, or at least consistent

EM

The Expectation-Maximization Algorithm (for a Two-Component Gaussian Mixture)

A Hat Trick

Two slips of paper in a hat:

Pink: $\mu = 3$, and

Blue: $\mu = 7$.

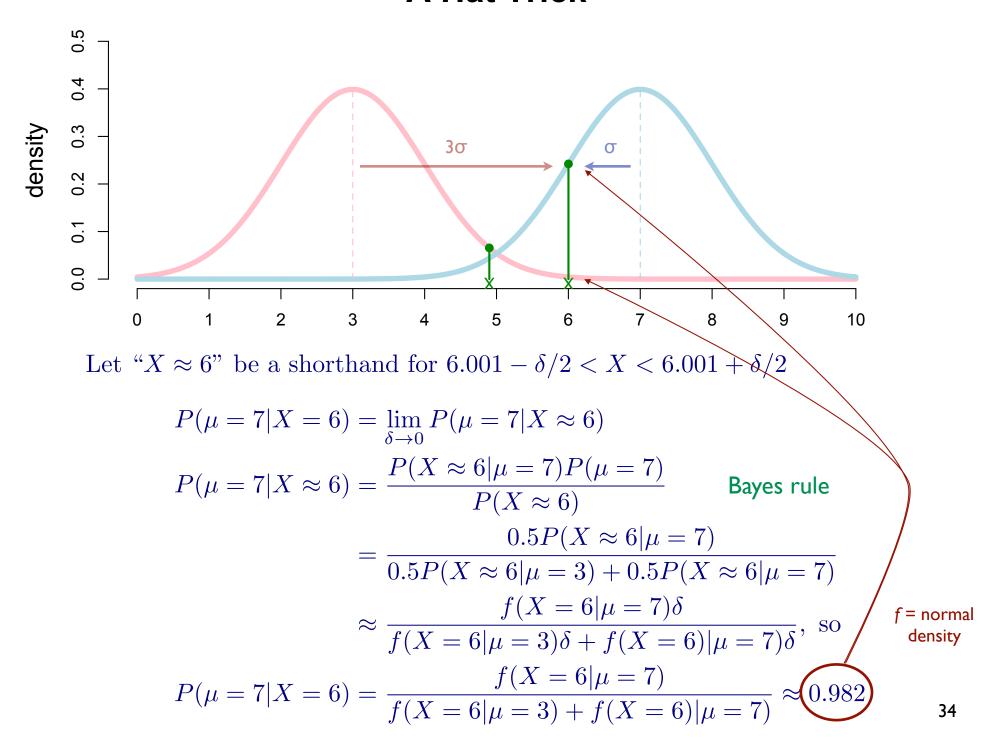
You draw one, then (without revealing color or μ) reveal a single sample X ~ Normal(mean μ , $\sigma^2 = 1$).

You happen to draw X = 6.001.

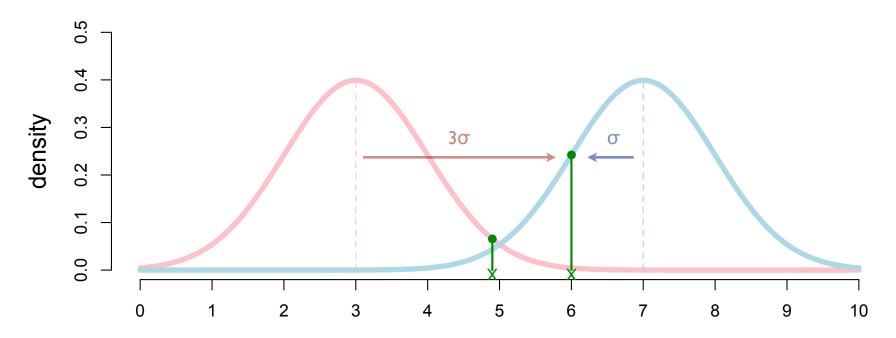
Dr. D. says "your slip = 7." What is P(correct)?

What if X had been 4.9?

A Hat Trick



A Hat Trick



Alternate View:

f = normal
 density

Posterior odds = Bayes Factor · Prior odds

$$\frac{P(\mu = 7|X = 6)}{P(\mu = 3|X = 6)} = \frac{f(X = 6|\mu = 7)}{f(X = 6|\mu = 3)} \cdot \frac{0.50}{0.50} = \frac{0.2422}{0.0044} \cdot \frac{1}{1} = \frac{54.8}{1}$$

I.e., 50:50 prior odds become 54:1 in favor of μ =7, given X=6.001 (and would become 3:2 in favor of μ =3, given X=4.9)

Another Hat Trick

Two secret numbers, μ_{pink} and μ_{blue}

On pink slips, many samples of Normal(μ_{pink} , $\sigma^2 = 1$),

Ditto on blue slips, from Normal(μ_{blue} , $\sigma^2 = 1$).

Based on 16 of each, how would you "guess" the secrets (where "success" means your guess is within ±0.5 of each secret)?

Roughly how likely is it that you will succeed?

Another Hat Trick (cont.)

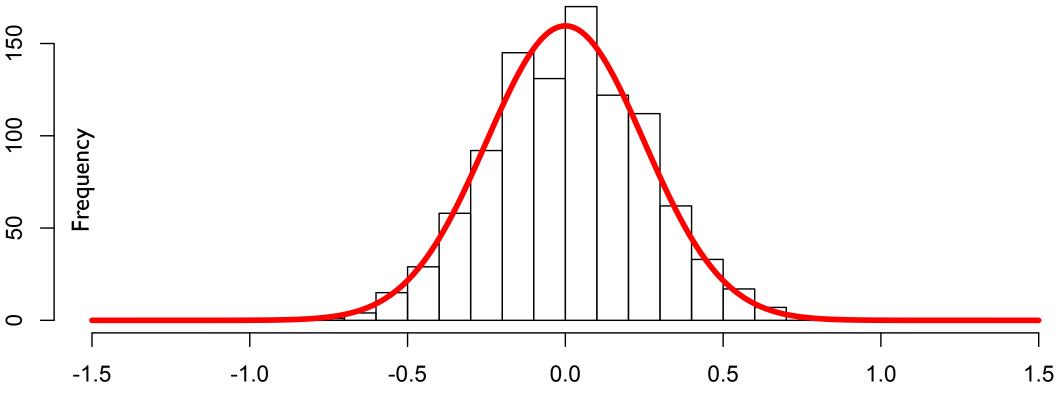
Pink/blue = red herrings; separate & independent

Given
$$X_1, ..., X_{16} \sim N(\mu, \sigma^2), \quad \sigma^2 = I$$

Calculate $Y = (X_1 + ... + X_{16})/16 \sim N(?,?)$
 $E[Y] = \mu$
 $Var(Y) = 16\sigma^2/16^2 = \sigma^2/16 = I/16$
I.e., X_i 's are all $\sim N(\mu, I)$; Y is $\sim N(\mu, I/16)$
and since $0.5 = 2$ sqrt($I/16$), we have:
"Y within $\pm .5$ of μ " = "Y within ± 2 σ of μ " $\approx 95\%$ prob

Note I: Y is a point estimate for μ ; Y ± 2 σ is a 95% confidence interval for μ (More on this topic later)

Histogram of 1000 samples of the average of 16 N(0,1) RVs Red = N(0,1/16) density



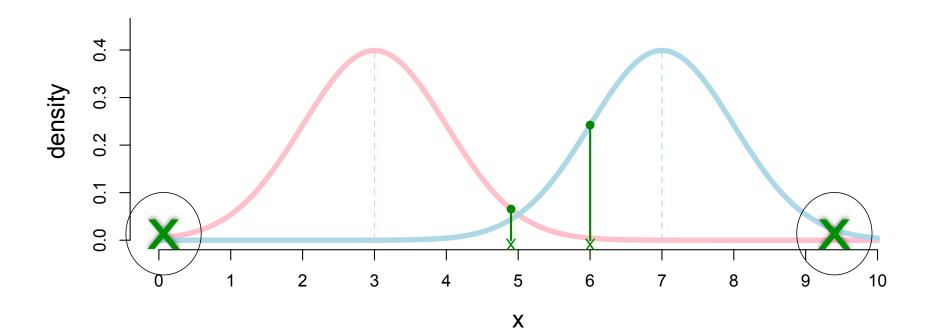
Sample Mean

Hat Trick 2 (cont.)

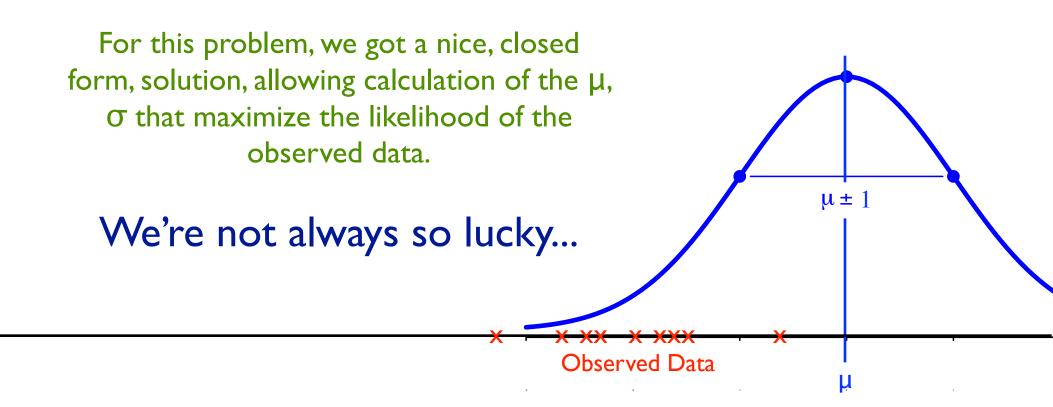
Note 2:

What would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

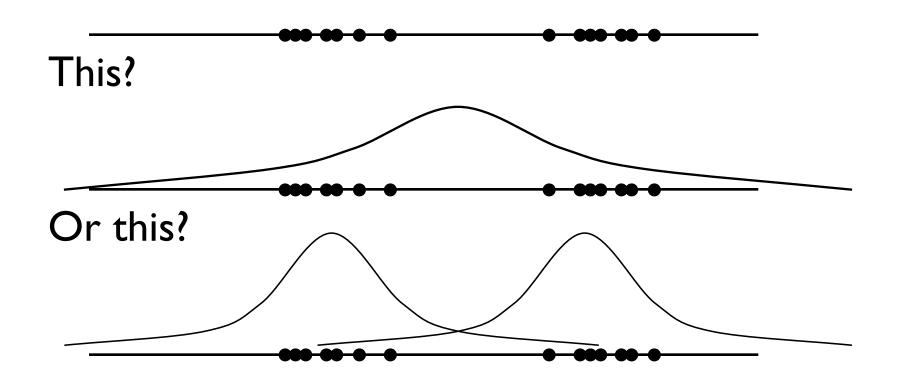
If they were half way between means of the others? If they were on opposite sides of the means of the others



Previously: How to estimate μ given data

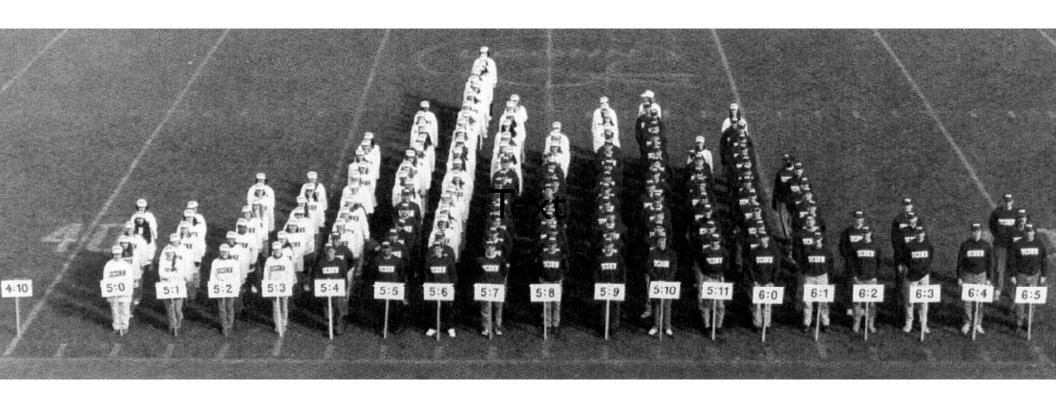


More Complex Example



(A modeling decision, not a math problem..., but if the later, what math?)

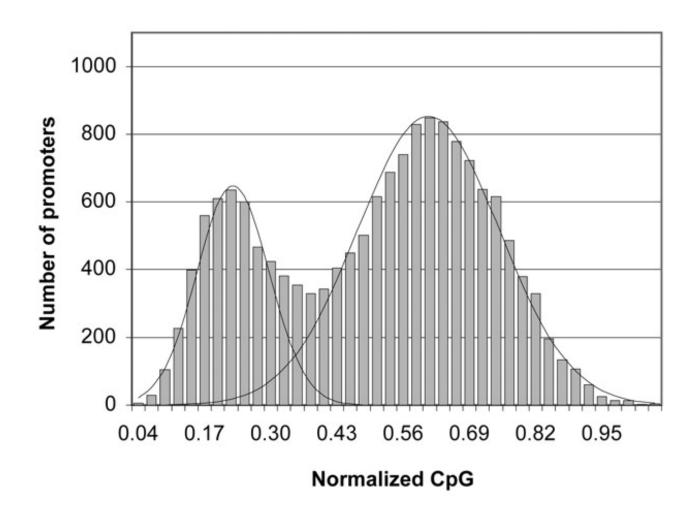
A Living Histogram



male and female genetics students, University of Connecticut in 1996
http://mindprod.com/jgloss/histogram.html

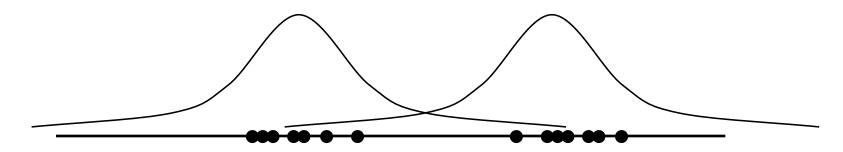
Another Real Example:

CpG content of human gene promoters



"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering



Parameters θ

means

 μ_1

 μ_2

variances

 σ_1^2

 σ_2^2

mixing parameters

 $\tau_2 = 1 - \tau_1$

P.D.F.
$$f(x|\mu_1, \sigma_1^2)$$
 $f(x|\mu_2, \sigma_2^2)$

Likelihood

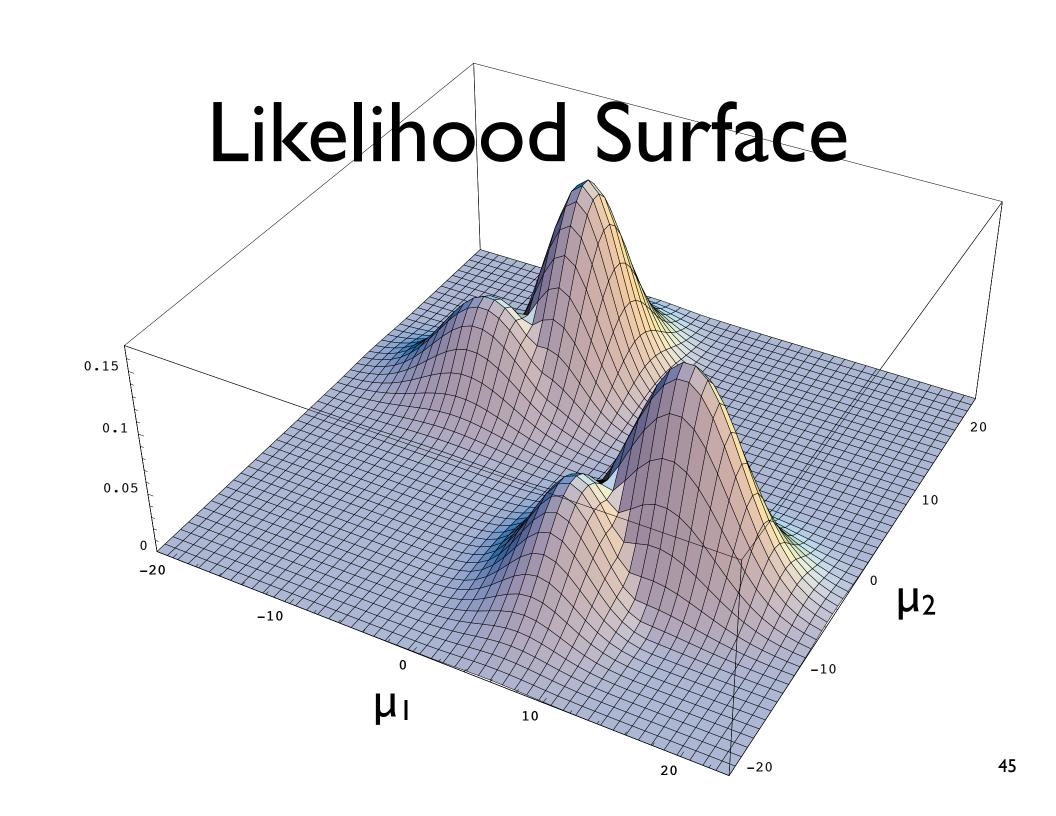
$$\tau_1 f(x|\mu_1, \sigma_1^2) + \tau_2 f(x|\mu_2, \sigma_2^2)$$

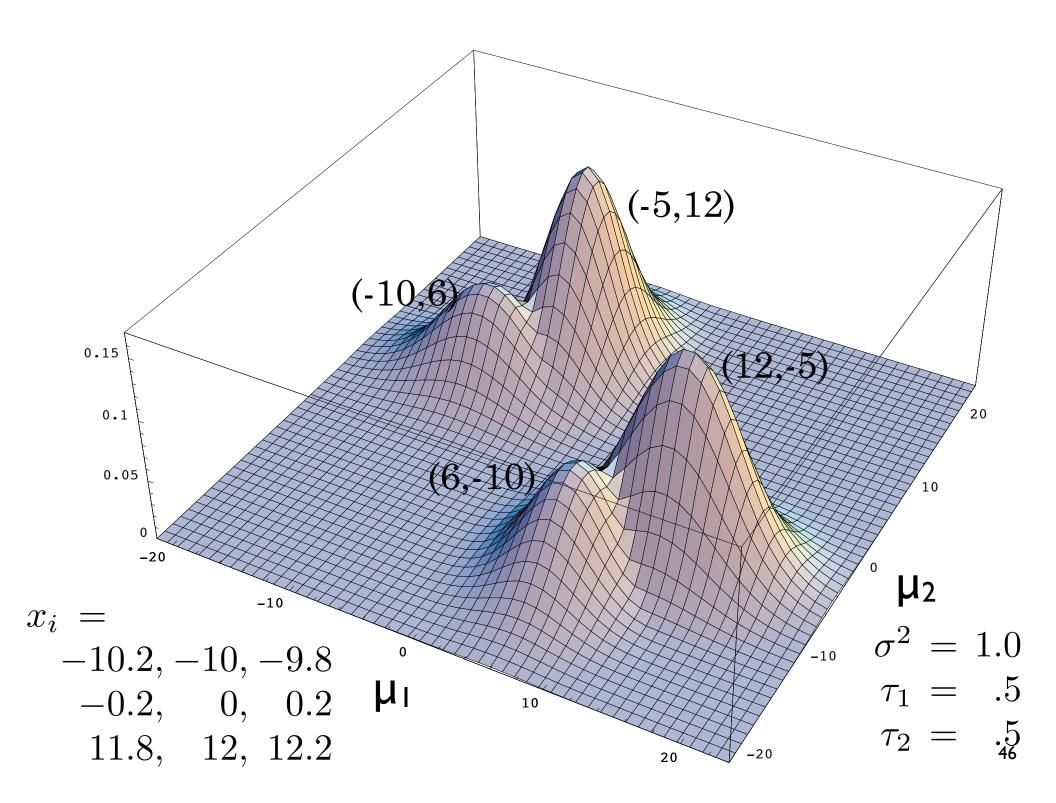
$$L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)$$

No

$$= \prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f(x_{i} | \mu_{j}, \sigma_{j}^{2})$$

closedform max 44





A What-If Puzzle

Likelihood
$$L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)$$

$$= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

Messy: no closed form solution known for finding $\boldsymbol{\theta}$ maximizing \boldsymbol{L}

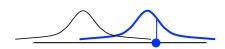
But what if we knew the hidden data?

$$z_{ij} = \begin{cases} 1 & \text{if } x_i \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{cases}$$

EM as Egg vs Chicken

IF parameters θ known, could estimate z_{ij} E.g., $|\mathbf{x}_i - \mu_1|/\sigma_1 \gg |\mathbf{x}_i - \mu_2|/\sigma_2 \Rightarrow P[\mathbf{z}_{i1} = \mathbf{I}] \ll P[\mathbf{z}_{i2} = \mathbf{I}]$

E.g.,
$$|\mathbf{x}_i - \mu_1|/\sigma_1 \gg |\mathbf{x}_i - \mu_2|/\sigma_2 \Rightarrow P[\mathbf{z}_{i1} = 1] \ll P[\mathbf{z}_{i2} = 1]$$



IF z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence μ_2 , σ_2

But we know neither; (optimistically) iterate:

E-step: calculate expected zij, given parameters

M-step: calculate "MLE" of parameters, given $E(z_{ij})$

Overall, a clever "hill-climbing" strategy

Simple Version: Not whether the contents of Classification EM"

If $E[z_{ij}] < .5$, pretend $z_{ij} = 0$; $E[z_{ij}] > .5$, pretend it's I

I.e., classify points as component I or 2

Now recald θ , assuming that partition (standard MLE)

Then recalc $E[z_{ij}]$, assuming that θ

Then re-recald θ , assuming new E[z_{ij}], etc., etc.

"Full EM" is slightly more involved, (to account for uncertainty in classification) but this is the crux.

"K-means clustering," essentially

Full EM

 x_i 's are known; θ unknown. Goal is to find MLE θ of:

$$L(x_1, \dots, x_n \mid \theta)$$
 (hidden data likelihood)

Would be easy if z_{ij} 's were known, i.e., consider:

$$L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2}\mid heta)$$
 (complete data likelihood)

But z_{ij} 's aren't known.

Instead, maximize expected likelihood of visible data

$$E(L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2} \mid \theta)),$$

where expectation is over distribution of hidden data $(z_{ij}$'s)



The E-step:

Find $E(z_{ij})$, i.e., $P(z_{ij}=1)$

Assume θ known & fixed

 $E = 0 \cdot P(0) + 1 \cdot P(1)$ A (B): the event that x_i was drawn from f_1 (f_2)

D: the observed datum xi

Expected value of z_{il} is P(A|D)

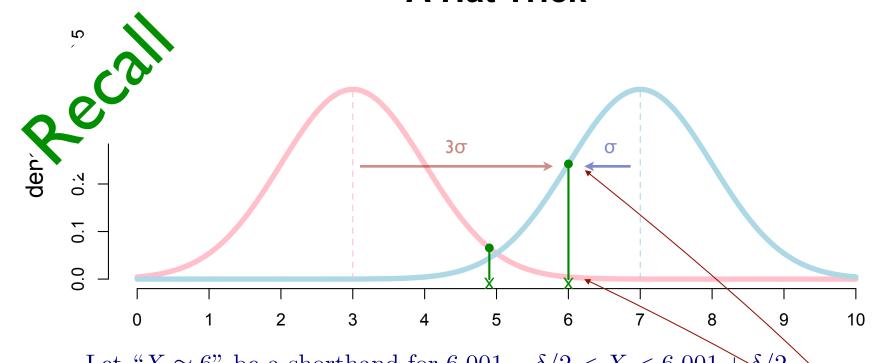
$$P(A|D) = \frac{P(D|A)P(A)}{P(D)}$$

$$P(D) = P(D|A)P(A) + P(D|B)P(B)$$

= $f_1(x_i|\theta_1) \tau_1 + f_2(x_i|\theta_2) \tau_2$

Repeat each

A Hat Trick



Let "
$$X \approx 6$$
" be a shorthand for $6.001 - \delta/2 < X < 6.001 + \delta/2$

$$P(\mu = 7|X = 6) = \lim_{\delta \to 0} P(\mu = 7|X \approx 6)$$

$$P(\mu = 7|X \approx 6) = \frac{P(X \approx 6|\mu = 7)P(\mu = 7)}{P(X \approx 6)}$$

$$= \frac{0.5P(X \approx 6|\mu = 7)}{0.5P(X \approx 6|\mu = 3) + 0.5P(X \approx 6|\mu = 7)}$$

$$\approx \frac{f(X = 6|\mu = 7)\delta}{f(X = 6|\mu = 3)\delta + f(X = 6)|\mu = 7)\delta}, \text{ so}$$

$$P(\mu = 7|X = 6) = \frac{f(X = 6|\mu = 7)}{f(X = 6|\mu = 3) + f(X = 6)|\mu = 7)} \approx 0.982$$

f = normaldensity

Complete Data Likelihood

Recall:

$$z_{1j} = \begin{cases} 1 & \text{if } x_1 \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{cases}$$

so, correspondingly,

$$L(x_1, z_{1j} \mid \theta) = \begin{cases} \tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\ \tau_2 f_2(x_1 \mid \theta) & \text{otherwise} \end{cases}$$

equal, if z_{ij} are 0/1

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta)$$

Idea 2 (Better):

$$L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}}$$

M-step:

Find θ maximizing E(log(Likelihood))

(For simplicity, assume $\sigma_1 = \sigma_2 = \sigma$; $\tau_1 = \tau_2 = \tau = 0.5$)

$$L(\vec{x}, \vec{z} \mid \theta) = \prod_{i=1}^{n} \underbrace{\frac{\tau}{\sqrt{2\pi\sigma^2}}} \exp\left(-\sum_{j=1}^{2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)$$

$$E[\log L(\vec{x}, \vec{z} \mid \theta)] = E\left[\sum_{i=1}^{n} \left(\log \tau - \frac{1}{2}\log(2\pi\sigma^{2}) - \sum_{j=1}^{2} z_{ij} \frac{(x_{i} - \mu_{j})^{2}}{2\sigma^{2}}\right)\right]$$

wrt dist of zij

$$= \sum_{i=1}^{n} \left(\log \tau - \frac{1}{2} \log(2\pi\sigma^2) - \sum_{j=1}^{2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2} \right)$$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

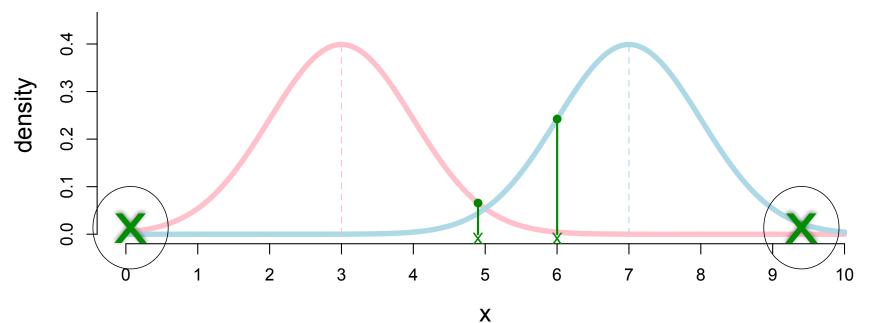
$$\mu_j = \sum_{i=1}^n E[z_{ij}] x_i / \sum_{i=1}^n E[z_{ij}]$$
 (intuit: avg, weighted by subpop prob)

Hat Trick 2 (cont.)

Note 2: red/blue separation is just like the M-step of EM if values of the hidden variables (z_{ij}) were known.

What if they're not? E.g., what would you do if some of the slips you pulled had coffee spilled on them, obscuring color?

If they were half way between means of the others? If they were on opposite sides of the means of the others



old E's

new µ'

M-step:calculating mu's

$$\mu_j = \sum_{i=1}^n E[z_{ij}] x_i / \sum_{i=1}^n E[z_{ij}]$$

In words: μ_j is the average of the observed x_i 's, weighted by the probability that x_i was sampled from component j.

							row sum	avg
$E[z_{i1}]$	0.99	0.98	0.7	0.2	0.03	0.01	2.91	
$E[z_{i2}]$	0.01	0.02	0.3	0.8	0.97	0.99	3.09	
Xi	9	10	11	19	20	21	90	15
$\frac{x_i}{E[z_{i1}]x_i}$								15 10.66

2 Component Mixture

$$\sigma_1 = \sigma_2 = 1; \ \tau = 0.5$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	z11		5.11E-12		1.00E+00		1.00E+00	
x2	-5	z21		2.61E-23		1.00E+00		1.00E+00	
х3	-4	z31		1.33E-34		9.98E-01		1.00E+00	
x4	0	z41		9.09E-80		1.52E-08		4.11E-03	
x 5	4	z51		6.19E-125		5.75E-19		2.64E-18	
х6	5	z61		3.16E-136		1.43E-21		4.20E-22	
x7	6	z71		1.62E-147		3.53E-24		6.69E-26	

Essentially converged in 2 iterations

(Excel spreadsheet on course web)

EM Summary

Fundamentally a maximum likelihood parameter estimation problem; broader than just Gaussian

Useful if 0/1 hidden data, and if analysis would be more tractable if hidden data z were known

Iterate:

E-step: estimate E(z) for each z, given θ

M-step: estimate θ maximizing E[log likelihood]

given E[z] [where "E[logL]" is wrt random $z \sim E[z] = p(z=1)$]

EM Issues

Under mild assumptions (DEKM sect 11.6), EM is guaranteed to increase likelihood with every E-M iteration, hence will converge. But it may converge to a local, not global, max. (Recall the 4-bump surface...) Issue is intrinsic (probably), since EM is often applied to NP-hard problems (including clustering, above and motif-discovery, soon) Nevertheless, widely used, often effective

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

With many components, empirically match arbitrary distribution Often well-justified, due to "hidden parameters" driving the visible data

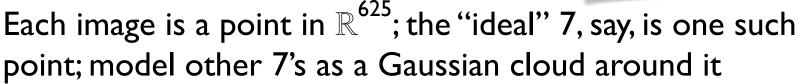
EM is extremely widely used for "hidden-data" problems Hidden Markov Models – speech recognition, DNA analysis, ...

A "Machine Learning" Example Handwritten Digit Recognition

Given: 10⁴ unlabeled, scanned images of handwritten digits, say 25 x 25 pixels,

Goal: automatically classify new examples

Possible Method:



Do EM, as above, but 10 components in 625 dimensions instead of 2 components in 1 dimension

"Recognize" a new digit by best fit to those 10 models, i.e., basically max E-step probability

