
CSEP 590 B
Computational Biology

Fall 2014
Lecture 2

Sequence Alignment

1

Tonight

Last week’s “quiz” & homework
Sequence alignment
Weekly “bio” interlude - DNA replication
More sequence alignment

2

“HW 0” Background Poll
In your own words, what is DNA? Its main role?
What is RNA? What is its main role in the cell?
How many amino acids are there? How many are used

in proteins?
Did human beings, as we know them, develop from

earlier species of animals?
What are stem cells?
What did Viterbi invent?
What is dynamic programming?
What is a likelihood ratio test?
What is the EM algorithm?
How would you find the maximum of f(x) = ax3 + bx2 +

cx +d in the interval -10<x<25?

Don’t worry,
we’ll talk about
all this stuff
before the
course ends

3

Sequence Alignment

Part I
Motivation, dynamic programming,

global alignment

4

Sequence Alignment

What
Why
A Simple Algorithm
Complexity Analysis
A better Algorithm:

“Dynamic Programming”

5

 Sequence Similarity: What

G G A C C A

T A C T A A G

T C C A A G

6

 Sequence Similarity: What

G G A C C A

T A C T A A G
 | | | | |
T C C – A A G

7

Sequence Similarity: Why

Bio
Most widely used comp. tools in biology
New sequence always compared to data bases
Similar sequences often have similar
origin and/or function
Recognizable similarity after 108 –109 yr
DNA sequencing & assembly

Other
spell check/correct, diff, svn/git/…, plagiarism, …

8

Taxonomy Report

root 64 hits 16 orgs

. Eukaryota 62 hits 14 orgs [cellular organisms]

. . Fungi/Metazoa group 57 hits 11 orgs

. . . Bilateria 38 hits 7 orgs [Metazoa; Eumetazoa]

. . . . Coelomata 36 hits 6 orgs

. Tetrapoda 26 hits 5 orgs [;;; Vertebrata;;;; Sarcopterygii]

. Eutheria 24 hits 4 orgs [Amniota; Mammalia; Theria]

. Homo sapiens 20 hits 1 orgs [Primates;; Hominidae; Homo]

. Murinae 3 hits 2 orgs [Rodentia; Sciurognathi; Muridae]

. Rattus norvegicus 2 hits 1 orgs [Rattus]

. Mus musculus 1 hits 1 orgs [Mus]

. Sus scrofa 1 hits 1 orgs [Cetartiodactyla; Suina; Suidae; Sus]

. Xenopus laevis 2 hits 1 orgs [Amphibia;;;;;; Xenopodinae; Xenopus]

. Drosophila melanogaster 10 hits 1 orgs [Protostomia;;;; Drosophila;;;]

. . . . Caenorhabditis elegans 2 hits 1 orgs [; Nematoda;;;;;; Caenorhabditis]

. . . Ascomycota 19 hits 4 orgs [Fungi]

. . . . Schizosaccharomyces pombe 10 hits 1 orgs [;;;; Schizosaccharomyces]

. . . . Saccharomycetales 9 hits 3 orgs [Saccharomycotina; Saccharomycetes]

. Saccharomyces 8 hits 2 orgs [Saccharomycetaceae]

. Saccharomyces cerevisiae . 7 hits 1 orgs

. Saccharomyces kluyveri ... 1 hits 1 orgs

. Candida albicans 1 hits 1 orgs [mitosporic Saccharomycetales;]

. . Arabidopsis thaliana 2 hits 1 orgs [Viridiplantae; …Brassicaceae;]

. . Apicomplexa 3 hits 2 orgs [Alveolata]

. . . Plasmodium falciparum 2 hits 1 orgs [Haemosporida; Plasmodium]

. . . Toxoplasma gondii 1 hits 1 orgs [Coccidia; Eimeriida; Sarcocystidae;]

. synthetic construct 1 hits 1 orgs [other; artificial sequence]

. lymphocystis disease virus 1 hits 1 orgs [Viruses; dsDNA viruses, no RNA …]

BLAST Demo
http://www.ncbi.nlm.nih.gov/blast/

Try it!
pick any protein, e.g.
hemoglobin, insulin,
exportin,… BLAST to
find distant relatives.

9

Alternate demo:
•  go to http://www.uniprot.org/uniprot/O14980 “Exportin-1”
•  find “BLAST” button about ½ way down page, under “Sequences”, just

above big grey box with the amino sequence of this protein
•  click “go” button
•  after a minute or 2 you should see the 1st of 10 pages of “hits” – matches to

similar proteins in other species
•  you might find it interesting to look at the species descriptions and the

“identity” column (generally above 50%, even in species as distant from us
as fungus -- extremely unlikely by chance on a 1071 letter sequence over a
20 letter alphabet)

•  Also click any of the colored “alignment” bars to see the actual alignment of
the human XPO1 protein to its relative in the other species – in 3-row
groups (query 1st, the match 3rd, with identical letters highlighted in between)

Terminology

String: ordered list of letters TATAAG

Prefix: consecutive letters from front
empty, T, TA, TAT, ...

Suffix: … from end
empty, G, AG, AAG, ...

Substring: … from ends or middle
empty, TAT, AA, ...

Subsequence: ordered, nonconsecutive
TT, AAA, TAG, ...

10

Sequence Alignment

 a c b c d b a c – – b c d b
 c a d b d – c a d b – d –

Defn: An alignment of strings S, T is a

pair of strings S’, T’ (with dashes) s.t.
(1) |S’| = |T’|, and (|S| = “length of S”)
(2) removing all dashes leaves S, T

11

 Alignment Scoring

a c b c d b a c - - b c d b
c a d b d - c a d b - d -

 -1 2 -1 -1 2 -1 2 -1

 Value = 3*2 + 5*(-1) = +1

The score of aligning (characters or
dashes) x & y is σ(x,y).

Value of an alignment
An optimal alignment: one of max value
(Assume σ(-,-) < 0)

Mismatch = -1
Match = 2

€

σ(S'[i],T '[i])
i=1

|S'|
∑

12

Optimal Alignment:
 A Simple Algorithm

for all subseqs A of S, B of T s.t. |A| = |B| do
 align A[i] with B[i], 1 ≤ i ≤ |A|
 align all other chars to spaces
 compute its value
 retain the max

end
output the retained alignment

S = abcd A = cd
T = wxyz B = xz

-abc-d a-bc-d
w--xyz -w-xyz

13

Analysis

Assume |S| = |T| = n
Cost of evaluating one alignment: ≥ n

How many alignments are there:

pick n chars of S,T together
say k of them are in S
match these k to the k unpicked chars of T

Total time:

E.g., for n = 20, time is > 240 operations

€

≥ n
2n
n

$
%

&

'
(> 22n, for n > 3€

≥
2n
n

$
%

&

'
(

14

Polynomial vs Exponential Growth

15

Asymptotic Analysis

How does run time grow as a function of
problem size?

 n2 or 100 n2 + 100 n + 100 vs 22n

Defn: f(n) = O(g(n)) iff there is a constant c s.t.
|f(n)| ≤ cg(n) for all sufficiently large n.
 100 n2 + 100 n + 100 = O(n2) [e.g. c = 101]

 n2 = O(22n)

 22n is not O(n2)
16

Big-O Example

n →

f(n)

g’(n)

g(n)

f(n) = O(g(n)) = O(g’(n))

17

Utility of Asymptotics

“All things being equal,” smaller asymptotic
growth rate is better

All things are never equal
Even so, big-O bounds often let you quickly pick

most promising candidates among competing
algorithms

Poly time algs often practical; non-poly algs
seldom are.

(Yes, there are exceptions.)
18

Fibonacci Numbers
(recursion)

fibr(n) {
if (n <= 1) {
 return 1;

} else {
 return fibr(n-1) + fibr(n-2);

}
}

Simple recursion,
but many
repeated

subproblems!!

⇒

Time = Ω(1.61n)

19

Call tree - start	

F (6)"

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1" 0"

F (1)

20

Full call tree	

F (6)"

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3) F (3)

F (1) F (0)

1" 0"

F (0)

0"1"

F (1)

F (1) F (0)

1" 0"F (1)

F (2) F (1)

1"
F (0)

1" 0"

F (2) F (1)

1"
F (0)

1" 0"

F (1)

1"

F (1)

many duplicates ⇒ exponential time!!

21

Fibonacci, II
(dynamic programming)

int fibd[n];
fibd[0] = 1;
fibd[1] = 1;
for(i=2; i<=n; i++) {

fibd[i] = fibd[i-1] + fibd[i-2];
}
return fibd[n];

Avoid repeated
subproblems by
tabulating their

solutions

⇒

Time = O(n)

(in this case)

22

Alignment by
Dynamic Programming?

Common Subproblems?
Plausible: probably re-considering alignments of
various small substrings unless we're careful.

Optimal Substructure?
Plausible: left and right "halves" of an optimal
alignment probably should be optimally aligned
(though they obviously interact a bit at the interface).

(Both made rigorous below.)

23

Optimal Substructure
(In More Detail)

Optimal alignment ends in 1 of 3 ways:
last chars of S & T aligned with each other
last char of S aligned with dash in T

last char of T aligned with dash in S
(never align dash with dash; σ(–, –) < 0)

In each case, the rest of S & T should be
optimally aligned to each other

24

Optimal Alignment in O(n2)
via “Dynamic Programming”

Input: S, T, |S| = n, |T| = m
Output: value of optimal alignment

Easier to solve a “harder” problem:

 V(i,j) = value of optimal alignment of
 S[1], …, S[i] with T[1], …, T[j]
 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m.

25

Base Cases

V(i,0): first i chars of S all match dashes

V(0,j): first j chars of T all match dashes

 €

V (i,0) = σ (S[k],−)
k=1

i
∑

€

V (0, j) = σ (−,T [k])
k=1

j
∑

26

General Case

Opt align of S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
S1…Si-1 &
T1…Tj-1

€

V(i,j) = max
V(i-1,j-1) +σ (S[i],T[j])
V(i-1,j) +σ (S[i], -)
V(i,j-1) +σ (- , T[j])

$
%

&
%

'

(
%

)
%
,

~~~~ S[i]
~~~~ T[ j]
!

" #
$

% &
,

~~~~    S[i]
~~~~    −   
!

" #
$

% &
, or

~~~~     −   
~~~~   T [ j]
!

" #
$

% &

.1,1 mjni ≤≤≤≤ all for
27

Calculating One Entry

€

V(i,j) = max
V(i-1,j-1) +σ (S[i],T[j])
V(i-1,j) +σ (S[i], -)
V(i,j-1) +σ (- , T[j])

$
%

&
%

'

(
%

)
%

V(i-1,j-1)

V(i,j)

V(i-1,j)

V(i,j-1) S[i] . .

T[j]
 :

28

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

Score(c,-) = -1
c
-

29

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

Score(-,a) = -1
-
a

30

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

Score(-,c) = -1
-  -
a c
-1

31

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1

2 c -2

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Example
Mismatch = -1
Match = 2

1

-1 -2

-1 1

-3 1

-2

σ(a,a)=+2 σ(-,a)=-1

σ(a,-)=-1
ca-
--a

ca
a-

ca
-a

32

Example

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1

2 c -2 1

3 b -3

4 c -4

5 d -5

6 b -6

 ↑
 S

Time =
 O(mn)

Mismatch = -1
Match = 2

33

Example

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2

 ↑
 S

Mismatch = -1
Match = 2

34

Finding Alignments: Trace Back

 j 0 1 2 3 4 5

i c a d b d ←T

0 0 -1 -2 -3 -4 -5

1 a -1 -1 1 0 -1 -2

2 c -2 1 0 0 -1 -2

3 b -3 0 0 -1 2 1

4 c -4 -1 -1 -1 1 1

5 d -5 -2 -2 1 0 3

6 b -6 -3 -3 0 3 2

 ↑
 S

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

35

Complexity Notes

Time = O(mn), (value and alignment)

Space = O(mn)

Easy to get value in Time = O(mn) and
Space = O(min(m,n))

Possible to get value and alignment in
Time = O(mn) and Space =O(min(m,n)),
but tricky (DEKM 2.6)

 36

Significance of Alignments

Is “42” a good score?
Compared to what?

Usual approach: compared to a specific
“null model”, such as “random sequences”

More on this later; a taste today, for use in next HW

37

Overall Alignment Significance, II
Empirical (via randomization)

You just searched with x, found “good” score for x:y
Generate N random “y-like” sequences (say N = 103 - 106)
Align x to each & score
If k of them have better score than alignment of x to y,

then the (empirical) probability of a chance alignment as
good as observed x:y alignment is (k+1)/(N+1)
e.g., if 0 of 99 are better, you can say “estimated p ≤ .01”

How to generate “random y-like” seqs? Scores depend on:
 Length, so use same length as y
Sequence composition, so uniform 1/20 or 1/4 is a bad

idea; even background pi can be dangerous
Better idea: permute y N times

38

Generating Random Permutations

for (i = n-1; i > 0; i--){
 j = random(0..i);
 swap X[i] <-> X[j];
}

All n! permutations of the original data equally
likely: A specific element will be last with prob
1/n; given that, another specific element will be
next-to-last with prob 1/(n-1), …; overall: 1/(n!)

0
1
2
3
4
5

. . .

C.f. http://en.wikipedia.org/wiki/Fisher–Yates_shuffle and (for subtle way to go
wrong) http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.html 39

Weekly Bio Interlude

DNA Replication

40

DNA Replication: Basics

3’ 5’

A

A

A C

C

C

G

G

G

T

T

T

T

3’ 5’

ACGAT

A
G
T

T

A

A C

G

41

Issues & Complications, I

1st ~10 nt’s added are called the primer
In simple model, DNA pol has 2 jobs: prime &

extend
Priming is error-prone
So, specialized primase

does the priming; pol
specialized for fast,
accurate extension

Still doesn’t solve the accuracy problem
(hint: primase makes an RNA primer)

3’ 5’
pol starts here

primase

primer

42

Issue 2: Rep Forks & Helices

“Replication Fork”: DNA double helix is
progressively unwound by a DNA
helicase, and both resulting single
strands are duplicated

DNA polymerase synthesizes new
strand 5’ -> 3’(reading its template
strand 3’ -> 5’)

That means on one (the “leading”)
strand, DNA pol is chasing/pushing
the replication fork

But on the other “lagging” strand, DNA
pol is running away from it.

5’

3’

3’

5’

43

Lagging strand gets a series
of “Okazaki fragments” of
DNA (~200nt in eukaryotes)
following each primer

The RNA primers are
later removed by a
nuclease and DNA pol
fills gaps (more accurate than primase; primed
by DNA from adjacent Okazaki frag

Fragments joined by ligase

Issue 3: Fragments

primer primer Okazaki

primer

3’ 5’

pol starts here

44

Issue 4: Coord of Leading/Lagging

Alberts et al., Mol. Biol. of the Cell, 3rd ed, p258 45

46

Very Nice DNA Repl. Animation

57

https://www.youtube.com/watch?v=yqESR7E4b_8https://
www.youtube.com/watch?v=yqESR7E4b_8

5’

3’

3’

5’

Issue 5: Twirls & Tangles

Unwinding helix (~10 nucleotides
per turn) would cause stress.
Topoisomerase I cuts DNA
backbone on one strand, allowing
it to spin about the remaining
bond, relieving stress

Topoisomerase II can cut & rejoin
both strands, after allowing
another double strand to pass
through the gap, de-tangling it.

47

Issue 6: Proofreading

Error rate of pol itself is ~10-4, but overall rate is
≈ 10-8, due to proofreading & repair, e.g.
pol itself can back up & cut off a mismatched base if

one happens to be inserted
priming the new strand is hard to do accurately, hence

RNA primers, later removed & replaced
other enzymes scan helix for “bulges” caused by base

mismatch, figure out which strand is original, cut
away new (faulty) copy; DNA pol fills gap

which strand is original? Bacteria: “methylate” some
A’s, eventually. Euks: strand nicking

48

Replication Summary

Speed: 50 (eukaryotes) to
 500 (prokaryotes) bp/sec

Accuracy: 1 error per 108–109 bp
Complex & highly optimized
Highly similar across all living cells

More info:

Alberts et al., Mol. Biol. of the Cell
49

Sequence Alignment

Part II

Local alignments & gaps

50

Variations

Local Alignment
Preceding gives global alignment, i.e. full
length of both strings;
Might well miss strong similarity of part of
strings amidst dissimilar flanks

Gap Penalties
10 adjacent spaces cost 10 x one space?

Many others
Similarly fast DP algs often possible

51

Local Alignment: Motivations

“Interesting” (evolutionarily conserved,
functionally related) segments may be a small
part of the whole

“Active site” of a protein
Scattered genes or exons amidst “junk”, e.g. retroviral
insertions, large deletions
Don’t have whole sequence

Global alignment might miss them if flanking
junk outweighs similar regions

52

Local Alignment

 Optimal local alignment of strings S & T:
Find substrings A of S and B of T having
max value global alignment

 S = abcxdex A = c x d e
 T = xxxcde B = c - d e value = 5

53

Local Alignment: “Obvious” Algorithm

 for all substrings A of S and B of T:
 Align A & B via dynamic programming
 Retain pair with max value

end ;
 Output the retained pair

Time: O(n2) choices for A, O(m2) for B,
O(nm) for DP, so O(n3m3) total.

[Best possible? Lots of redundant work…]
54

Local Alignment in O(nm)
via Dynamic Programming

Input: S, T, |S| = n, |T| = m
Output: value of optimal local alignment
Better to solve a “harder” problem
for all 0 ≤ i ≤ n, 0 ≤ j ≤ m :
 V(i,j) = max value of opt (global)

 alignment of a suffix of S[1], …, S[i]
 with a suffix of T[1], …, T[j]

 Report best i,j

55

Base Cases

Assume σ(x,-) ≤ 0, σ(-,x) ≤ 0
V(i,0): some suffix of first i chars of S; all match

spaces in T; best suffix is empty

 V(i,0) = 0

V(0,j): similar

 V(0,j) = 0

56

General Case Recurrences

Opt suffix align S[1], …, S[i] vs T[1], …, T[j]:

Opt align of
suffix of
S1…Si-1 &
T1…Tj-1

.1 ,1 allfor

,

0
) (1
) (1
)(11

max

mjni

T[j],-) V(i,j-
- S[i], ,j) V(i-

S[i],T[j]),j-V(i-

 V(i,j)

≤≤≤≤

"
#

"
$

%

"
&

"
'

(

+
+
+

=
σ
σ
σ

!"
#

$%
&

!"
#

$%
& −

!"
#

$%
&

−!"
#

$%
& or ,][~~~~

      ~~~~  ,     ~~~~
][  ~~~~   ,][~~~~

][~~~~
jT

iS
jT
iS

opt suffix 
alignment 
has: 
 2, 1, 1, 0 
chars of  
S/T 

57 



Scoring Local Alignments 

  
 j  0  1  2  3   4  5  6 

 
i    x  x  x  c  d  e     ←T 
 
0   0  0  0  0  0  0  0 
 
1  a  0   
 
2  b  0   
 
3  c  0   
 
4  x  0   
 
5  d  0   
 
6  e  0   
 
7  x  0 

 ↑ 
 S   58 



Finding Local Alignments 

  
 j  0  1  2  3   4  5  6 

 
i    x  x  x  c  d  e     ←T 
 
0   0  0  0  0  0  0  0 
 
1  a  0  0  0  0  0  0  0 
 
2  b  0  0  0  0  0  0  0 
 
3  c  0  0  0  0  2  1  0 
 
4  x  0  2  2  2  1  1  0 
 
5  d  0  1  1  1  1  3  2 
 
6  e  0  0  0  0  0  2  5 
 
7  x  0  2  2  2  1  1  4 

 ↑ 
 S   

Again, 
arrows 
follow 
max 

59 



Notes 

Time and Space = O(mn) 
Space O(min(m,n)) possible with time  

O(mn), but finding alignment is trickier 
 
Local alignment: “Smith-Waterman” 
Global alignment: “Needleman-Wunsch” 

60 



Sequence Evolution 

“Nothing in Biology Makes Sense Except in the Light of 
Evolution” – Theodosius Dobzhansky, 1973 

 
Changes happen at random 
Deleterious/neutral/advantageous changes unlikely/

possibly/likely spread widely in a population 
Changes are less likely to be tolerated in positions 

involved in many/close interactions, e.g. 
enzyme binding pocket 
protein/protein interaction surface 
… 

61 



Alignment With Gap Penalties 

Gap: maximal run of spaces in S’ or T’ 
ab--ddc-d   2 gaps in S’ 
a---ddcbd   1 gap in T’ 

Motivations, e.g.: 
mutation might insert/delete several or even 
many residues at once 
matching mRNA (no introns) to genomic DNA 
(exons and introns) 
some parts of proteins less critical 
 62 



A Protein Structure: 
(Dihydrofolate Reductase) 

63 



CLUSTAL W (1.82) multiple 
sequence alignment 
 http://pir.georgetown.edu/
cgi-bin/multialn.pl    
2/11/2013 

mouse 
human 

chicken 
fly 

yeast 

Alignment of 5 Dihydrofolate reductase proteins 
P00375  ----MVRPLNCIVAVSQNMGIGKNGDLPWPPLRNEFKYFQRMTTTSSVEGKQNLVIMGRK 
P00374  ----MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKK 
P00378  -----VRSLNSIVAVCQNMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQNAVIMGKK 
P17719  ----MLR-FNLIVAVCENFGIGIRGDLPWR-IKSELKYFSRTTKRTSDPTKQNAVVMGRK 
P07807  MAGGKIPIVGIVACLQPEMGIGFRGGLPWR-LPSEMKYFRQVTSLTKDPNKKNALIMGRK 
             :  .. :..:  ::***  *.***  : .* :** : *. :    *:* ::**:* 
 
P00375  TWFSIPEKNRPLKDRINIVLSRELKEP----PRGAHFLAKSLDDALRLIEQPELASKVDM 
P00374  TWFSIPEKNRPLKGRINLVLSRELKEP----PQGAHFLSRSLDDALKLTEQPELANKVDM 
P00378  TWFSIPEKNRPLKDRINIVLSRELKEA----PKGAHYLSKSLDDALALLDSPELKSKVDM 
P17719  TYFGVPESKRPLPDRLNIVLSTTLQESDL--PKG-VLLCPNLETAMKILEE---QNEVEN 
P07807  TWESIPPKFRPLPNRMNVIISRSFKDDFVHDKERSIVQSNSLANAIMNLESN-FKEHLER 
        *: .:* . *** .*:*:::*  :::      .     . .*  *:   :.    ..::  
 
P00375  VWIVGGSSVYQEAMNQPGHLRLFVTRIMQEFESDTFFPEIDLGKYKLLPEYPG------- 
P00374  VWIVGGSSVYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPG------- 
P00378  VWIVGGTAVYKAAMEKPINHRLFVTRILHEFESDTFFPEIDYKDFKLLTEYPG------- 
P17719  IWIVGGSGVYEEAMASPRCHRLYITKIMQKFDCDTFFPAIP-DSFREVAPDSD------- 
P07807  IYVIGGGEVYSQIFSITDHWLITKINPLDKNATPAMDTFLDAKKLEEVFSEQDPAQLKEF 
        ::::**  **.  :  .    :   . :..    :: . :   . . :    .        
 
P00375  VLSEVQ------------EEKGIKYKFEVYEKKD--- 
P00374  VLSDVQ------------EEKGIKYKFEVYEKND--- 
P00378  VPADIQ------------EEDGIQYKFEVYQKSVLAQ 
P17719  MPLGVQ------------EENGIKFEYKILEKHS--- 
P07807  LPPKVELPETDCDQRYSLEEKGYCFEFTLYNRK---- 
        :   ::            **.*  ::: : ::      

64 



Topoisomerase I 
 

http://www.rcsb.org/pdb/explore.do?structureId=1a36 
65 



Affine Gap Penalties 

"
"
"
"
Gap penalty = g + e*(gaplen-1), g ≥ e ≥ 0"
"
Note: no longer suffices to know just the 

score of best subproblem(s) – state 
matters: do they end with ‘-’ or not. "

66 



Global Alignment with  
Affine Gap Penalties 

V(i,j) =  value of opt alignment of  
  S[1], …, S[i] with T[1], …, T[j] 

G(i,j) = …, s.t. last pair matches S[i] & T[j] 
F(i,j) =  …, s.t. last pair matches S[i] & –  
E(i,j) =  …, s.t. last pair matches   –  & T[j] 
 
Time: O(mn)   [calculate all, O(1) each] 

S T 

x/– x/– 

x x 

x – 

– x 

67 



Affine Gap Algorithm 

Gap penalty = g + e*(gaplen-1), g ≥ e ≥ 0"

V(i,0)"= E(i,0) = V(0,i) = F(0,i) = -g-(i-1)*e"

V(i,j) "= max(G(i,j), F(i,j), E(i,j))"
G(i,j)"= V(i-1,j-1) + σ(S[i],T[j])"
F(i,j) "= max( F(i-1,j)-e , V(i-1,j)-g )"
E(i,j) "= max( E(i,j-1)-e , V(i,j-1)-g )"

old gap        new gap 

S T 

x/– x/– 

x x 

x – 

– x 

Q. Why is the “V” case a “new gap” when V includes E & F? 68 



Other Gap Penalties 

Score = f(gap length) 
Kinds, & best known alignment time 

affine     O(n2)  [really, O(mn)] 

convex     O(n2log n) 

general     O(n3) 

 

☞ 

69 



Summary: Alignment 
Functionally similar proteins/DNA often have recognizably 

similar sequences even after eons of divergent evolution 
Ability to find/compare/experiment with “same” sequence 

in other organisms is a huge win 
Surprisingly simple scoring works well in practice: score 

positions separately & add, usually w/ fancier gap model 
like affine 

Simple dynamic programming algorithms can find optimal 
alignments under these assumptions in poly time 
(product of sequence lengths) 

This, and heuristic approximations to it like BLAST, are 
workhorse tools in molecular biology, and elsewhere. 

70 



Summary: Dynamic Programming 
Keys to D.P. are to  
a)  identify the subproblems (usually repeated/overlapping) 
b) solve them in a careful order so all small ones solved 

before they are needed by the bigger ones, and 
c) build table with solutions to the smaller ones so bigger 

ones just need to do table lookups (no recursion, despite 
recursive formulation implicit in (a)) 

d)  Implicitly, optimal solution to whole problem devolves to 
optimal solutions to subproblems 

A really important algorithm design paradigm 
 

71 


