CSEP 590 B Computational Biology Fall 2014

Lecture 2 Sequence Alignment

Tonight

Last week's "quiz" & homework Sequence alignment Weekly "bio" interlude - DNA replication More sequence alignment

"HW 0" Background Poll

In your own words, what is DNA? Its main role? What is RNA? What is its main role in the cell?

- How many amino acids are there? How many are used in proteins?
- Did human beings, as we know them, develop from earlier species of animals?
- What are stem cells?
- What did Viterbi invent?
- What is dynamic programming?
- What is a likelihood ratio test?
- What is the EM algorithm?

Don't worry, we'll talk about all this stuff before the course ends

How would you find the maximum of f(x) = ax3 + bx2 + cx + d in the interval -10<x<25?

Sequence Alignment

Part I Motivation, dynamic programming, global alignment

Sequence Alignment

What Why A Simple Algorithm Complexity Analysis A better Algorithm: "Dynamic Programming"

Sequence Similarity: What

GGACCA

TACTAAG

TCCAAG

Sequence Similarity: What

GGACCA

TACTAAG | | | | TCC-AAG

Sequence Similarity: Why

Bio

- Most widely used comp. tools in biology
- New sequence always compared to data bases

Similar sequences often have similar origin and/or function

- Recognizable similarity after 10⁸ 10⁹ yr
- DNA sequencing & assembly
- Other
 - spell check/correct, diff, svn/git/..., plagiarism, ...

BLAST Demo

http://www.ncbi.nlm.nih.gov/blast/

Taxonomy Report

Try it! pick any protein, e.g. hemoglobin, insulin, exportin,... BLAST to find distant relatives.

root	64 hits	16 orgs
. Eukaryota	62 hits	14 orgs [cellular organisms]

Alternate demo:

- go to http://www.uniprot.org/uniprot/O14980 "Exportin-1"
- find "BLAST" button about ½ way down page, under "Sequences", just above big grey box with the amino sequence of this protein
- click "go" button
- after a minute or 2 you should see the 1st of 10 pages of "hits" matches to similar proteins in other species
- you might find it interesting to look at the species descriptions and the "identity" column (generally above 50%, even in species as distant from us as fungus -- extremely unlikely by chance on a 1071 letter sequence over a 20 letter alphabet)
- Also click any of the colored "alignment" bars to see the actual alignment of the human XPO1 protein to its relative in the other species – in 3-row groups (query 1st, the match 3rd, with identical letters highlighted in between)

Terminology

String: ordered list of letters TATAAG **Prefix:** consecutive letters from front empty, T, TA, TAT, ... Suffix: ... from end empty, G, AG, AAG, ... Substring: ... from ends or middle empty, TAT, AA, ... Subsequence: ordered, nonconsecutive TT, AAA, TAG, ...

Sequence Alignment

acbcdb	ac bcdb
/ \	
cadbd	— c a d b — d —

Defn: An alignment of strings S, T is a pair of strings S', T' (with dashes) s.t.
(1) |S'| = |T'|, and (|S| = "length of S")
(2) removing all dashes leaves S, T

Mismatch = -1 Match = 2

Alignment Scoring

a c b c d b c a d b d - c a d b - d - -1 2 -1 -1 2 -1 2 -1Value = 3*2 + 5*(-1) = +1

The score of aligning (characters or dashes) x & y is $\sigma(x,y)$. Value of an alignment $\sum_{i=1}^{|S'|} \sigma(S'[i],T'[i])$ An optimal alignment: one of max value (Assume $\sigma(-,-) < 0$)

Optimal Alignment: A Simple Algorithm

for all subseqs A of S, B of T s.t. |A| = |B| doalign A[i] with B[i], $1 \le i \le |A|$ align all other chars to spacescompute its valueretain the maxend

output the retained alignment

Analysis

Assume |S| = |T| = nCost of evaluating one alignment: $\ge n$

How many alignments are there: $\geq \binom{2n}{n}$ pick n chars of S,T together say k of them are in S match these k to the k *un*picked chars of T Total time: $\geq n \binom{2n}{n} > 2^{2n}$, for n > 3E.g., for n = 20, time is > 2⁴⁰ operations

Polynomial vs Exponential Growth

Asymptotic Analysis

How does run time grow as a function of problem size?

 n^2 or 100 n^2 + 100 n + 100 vs 2^{2n}

Defn: f(n) = O(g(n)) iff there is a constant c s.t. $|f(n)| \le cg(n)$ for all sufficiently large n.

 $100 n^2 + 100 n + 100 = O(n^2)$ [e.g. c = 101]

 $n^2 = O(2^{2n})$

2²ⁿ is *not* O(n²)

Utility of Asymptotics

- "All things being equal," smaller asymptotic growth rate is better
- All things are never equal
- Even so, big-O bounds often let you quickly pick most promising candidates among competing algorithms
- Poly time algs often practical; non-poly algs seldom are.
- (Yes, there are exceptions.)

Fibonacci Numbers (recursion)

fibr(n) { if (n <= 1) { return 1; } else { return fibr(n-1) + fibr(n-2); } Simple recursion, but many repeated subproblems!! \Rightarrow Time = $\Omega(1.61^{n})$

Fibonacci, II (dynamic programming)

```
int fibd[n];
fibd[0] = 1;
fibd[1] = 1;
for(i=2; i<=n; i++) {
 fibd[i] = fibd[i-1] + fibd[i-2];
return fibd[n];
```

Avoid repeated subproblems by tabulating their solutions ⇒

Time = O(n)

(in this case)

Alignment by Dynamic Programming?

Common Subproblems?

Plausible: probably re-considering alignments of various small substrings unless we're careful.

Optimal Substructure?

Plausible: left and right "halves" of an optimal alignment probably should be optimally aligned (though they obviously interact a bit at the interface).

(Both made rigorous below.)

Optimal Substructure (In More Detail)

Optimal alignment *ends* in 1 of 3 ways:
last chars of S & T aligned with each other
last char of S aligned with dash in T
last char of T aligned with dash in S
(never align dash with dash; σ(-, -) < 0)
In each case, the *rest* of S & T should be *optimally* aligned to each other

Optimal Alignment in O(n²) via "Dynamic Programming"

Input: S, T, |S| = n, |T| = m Output: value of optimal alignment

Easier to solve a "harder" problem:

V(i,j) = value of optimal alignment of S[1], ..., S[i] with T[1], ..., T[j] for all $0 \le i \le n$, $0 \le j \le m$.

Base Cases

V(i,0): first i chars of S all match dashes

$$V(i,0) = \sum_{k=1}^{i} \sigma(S[k],-)$$

V(0,j): first j chars of T all match dashes $V(0,j) = \sum_{k=1}^{j} \sigma(-,T[k])$

General Case

Opt align of S[1], ..., S[i] vs T[1], ..., T[j]: $\begin{vmatrix} \sim \sim \sim \sim S[i] \\ \sim \sim \sim \sim T[j] \end{vmatrix}, \quad \begin{vmatrix} \sim \sim \sim \sim \sim S[i] \\ \sim \sim \sim \sim -1 \end{vmatrix}, \text{ or } \begin{vmatrix} \sim \sim \sim \sim -1 \\ \sim \sim \sim \sim T[j] \end{vmatrix}$ Opt align of $S_{1...}S_{i\cdot 1} \& T_{1...}T_{j\cdot 1}$ $V(i,j) = \max \begin{cases} V(i-1,j-1) + \sigma(S[i],T[j]) \\ V(i-1,j) + \sigma(S[i], -) \\ V(i,j-1) + \sigma(-, T[j]) \end{cases}, \uparrow$ Opt align of for all $1 \le i \le n$, $1 \le j \le m$.

Calculating One Entry

$$V(i,j) = \max \begin{cases} V(i-1,j-1) + \sigma(S[i],T[j]) \\ V(i-1,j) + \sigma(S[i], -) \\ V(i,j-1) + \sigma(-, T[j]) \end{cases}$$

Mismatch = -1 Match = 2

Example

$\begin{array}{ll} \text{Mismatch} = -1 \\ \text{Match} &= 2 \end{array}$

Example

	j	0	1	2	3	4	5	
i			С	a	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	а	-1						
2	С	-2						
3	b	-3	- a	Sc	ore(-,a	n) = -1		
4	С	-4	ŭ			T		
5	d	-5						
6	b	-6						

Ŝ

$\begin{array}{ll} \text{Mismatch} = -1 \\ \text{Match} &= 2 \end{array}$

Example

Ŝ

Mismatch = -1 Match = 2

Example

$\begin{array}{ll} \text{Mismatch} = -1 \\ \text{Match} &= 2 \end{array}$

Example

	j	0	1	2	3	4	5	
i			С	а	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	а	-1	-1	1				
2	С	-2	1					Time =
3	b	-3						O(mn)
4	С	-4						
5	d	-5						
6	b	-6						

Ŝ

$\begin{array}{ll} \text{Mismatch} = -1 \\ \text{Match} &= 2 \end{array}$

Example

	j	0	1	2	3	4	5	
i			С	а	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	а	-1	-1	1	0	-1	-2	
2	С	-2	1	0	0	-1	-2	
3	b	-3	0	0	_1	2	1	
4	С	-4	-1	-1	-1	1	1	
5	d	-5	-2	-2	1	0	3	
6	b	-6	-3	-3	0	3	2	

Finding Alignments: Trace Back

Arrows = (ties for) max in V(i,j); 3 LR-to-UL paths = 3 optimal alignments

Complexity Notes

Time = O(mn), (value and alignment)

Space = O(mn)

Easy to get value in Time = O(mn) and Space = O(min(m,n))

Possible to get value *and alignment* in Time = O(mn) and Space =O(min(m,n)), but tricky (DEKM 2.6)
Significance of Alignments

Is "42" a good score? Compared to what?

Usual approach: compared to a specific "null model", such as "random sequences"

More on this later; a taste today, for use in next HW

Overall Alignment Significance, II Empirical (via randomization)

You just searched with x, found "good" score for x:y Generate N random "y-like" sequences (say N = 10³ - 10⁶) Align x to each & score

If k of them have better score than alignment of x to y, then the (empirical) probability of a chance alignment as good as observed x:y alignment is (k+1)/(N+1)

e.g., if 0 of 99 are better, you can say "estimated $p \le .01$ "

- How to generate "random y-like" seqs? Scores depend on: Length, so use same length as y
 - Sequence composition, so uniform 1/20 or 1/4 is a bad idea; even background p_i can be dangerous
 - Better idea: permute y N times

Generating Random Permutations

for (i = n-1; i > 0; i--){
 j = random(0..i);
 swap X[i] <-> X[j];
}

All n! permutations of the original data equally likely: A specific element will be last with prob 1/n; given that, another specific element will be next-to-last with prob 1/(n-1), ...; overall: 1/(n!)

C.f. <u>http://en.wikipedia.org/wiki/Fisher–Yates_shuffle</u> and (for subtle way to go wrong) <u>http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.htmp</u>

Weekly Bio Interlude DNA Replication

DNA Replication: Basics

41

Issues & Complications, I

1st ~10 nt's added are called the *primer* In simple model, DNA pol has 2 jobs: prime & extend

Priming is error-prone

So, specialized *primase* does the priming; pol specialized for fast, accurate extension

Still doesn't solve the accuracy problem (hint: primase makes an *RNA* primer)

Issue 2: Rep Forks & Helices

- "Replication Fork": DNA double helix is progressively unwound by a DNA helicase, and both resulting single strands are duplicated
- DNA polymerase synthesizes new strand 5' -> 3'(reading its template strand 3' -> 5')
- That means on one (the "leading") strand, DNA pol is chasing/pushing the replication fork
- But on the other "lagging" strand, DNA pol is running away from it.

Issue 3: Fragments

Lagging strand gets a series of "Okazaki fragments" of DNA (~200nt in eukaryotes) following each primer

The RNA primers are later removed by a *nuclease* and *DNA* pol

fills gaps (more accurate than primase; primed by DNA from adjacent Okazaki frag

Fragments joined by ligase

Issue 4: Coord of Leading/Lagging

Alberts et al., Mol. Biol. of the Cell, 3rd ed, p258

(C)

Very Nice DNA Repl. Animation

https://www.youtube.com/watch?v=yqESR7E4b 8https:// www.youtube.com/watch?v=yqESR7E4b 8

Issue 5: Twirls & Tangles

Unwinding helix (~10 nucleotides per turn) would cause stress. *Topoisomerase I* cuts DNA backbone on *one* strand, allowing it to spin about the remaining bond, relieving stress

Topoisomerase II can cut & rejoin *both* strands, after allowing another double strand to pass through the gap, de-tangling it.

Issue 6: Proofreading

Error rate of pol itself is $\sim 10^{-4}$, but overall rate is ≈ 10⁻⁸, due to proofreading & repair, e.g. pol itself can back up & cut off a mismatched base if one happens to be inserted priming the new strand is hard to do accurately, hence RNA primers, later removed & replaced other enzymes scan helix for "bulges" caused by base mismatch, figure out which strand is original, cut away new (faulty) copy; DNA pol fills gap which strand is original? Bacteria: "methylate" some A's, eventually. Euks: strand nicking

Replication Summary

Speed: 50 (eukaryotes) to 500 (prokaryotes) bp/sec Accuracy: 1 error per 10⁸–10⁹ bp Complex & highly optimized Highly similar across all living cells

More info:

Alberts et al., Mol. Biol. of the Cell

Sequence Alignment

Part II Local alignments & gaps

Variations

Local Alignment

- Preceding gives *global* alignment, i.e. full length of both strings;
- Might well miss strong similarity of part of strings amidst dissimilar flanks

Gap Penalties

10 adjacent spaces cost 10 x one space?

Many others

Similarly fast DP algs often possible

Local Alignment: Motivations

"Interesting" (evolutionarily conserved, functionally related) segments may be a small part of the whole

"Active site" of a protein

Scattered genes or exons amidst "junk", e.g. retroviral insertions, large deletions

Don't have whole sequence

Global alignment might miss them if flanking junk outweighs similar regions

Local Alignment

Optimal *local alignment* of strings S & T: Find substrings A of S and B of T having max value global alignment

S = abcxdexA = c x d eT = xxxcdeB = c - d evalue = 5

Local Alignment: "Obvious" Algorithm

for all substrings A of S and B of T: Align A & B via dynamic programming Retain pair with max value end;

Output the retained pair

Time: $O(n^2)$ choices for A, $O(m^2)$ for B, O(nm) for DP, so $O(n^3m^3)$ total.

[Best possible? Lots of redundant work...]

Local Alignment in O(nm) via Dynamic Programming

Input: S, T, |S| = n, |T| = m Output: value of optimal local alignment

Better to solve a "harder" problem for all $0 \le i \le n$, $0 \le j \le m$:

V(i,j) = max value of opt (global) alignment of a suffix of S[1], ..., S[i] with a suffix of T[1], ..., T[j]

Report best i,j

Base Cases

Assume $\sigma(x,-) \le 0$, $\sigma(-,x) \le 0$

V(i,0): some suffix of first i chars of S; all match spaces in T; best suffix is empty

$$V(i,0) = 0$$

V(0,j): similar

$$V(0,j) = 0$$

General Case Recurrences

Opt suffix align S[1], ..., S[i] vs T[1], ..., T[j]:

$$\begin{bmatrix} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\$$

57

Scoring Local Alignments

	j	0	1	2	3	4	5	6	
i			X	X	X	С	d	е	←T
0		0	0	0	0	0	0	0	
1	а	0							
2	b	0							
3	С	0							
4	X	0							
5	d	0							
6	е	0							
7	X	0							
	↑ S								58

Notes

Time and Space = O(mn) Space O(min(m,n)) possible with time O(mn), but finding alignment is trickier

Local alignment: "Smith-Waterman" Global alignment: "Needleman-Wunsch"

Sequence Evolution

"Nothing in Biology Makes Sense Except in the Light of Evolution" – Theodosius Dobzhansky, 1973

Changes happen at random

Deleterious/neutral/advantageous changes unlikely/ possibly/likely spread widely in a population

Changes are less likely to be tolerated in positions involved in many/close interactions, e.g.

- enzyme binding pocket
- protein/protein interaction surface

• • •

Alignment With Gap Penalties

Gap: maximal run of spaces in S' or T'

ab--ddc-d2 gaps in S'a---ddcbd1 gap in T'

Motivations, e.g.:

mutation might insert/delete several or even many residues at once

- matching mRNA (no introns) to genomic DNA (exons and introns)
- some parts of proteins less critical

A Protein Structure: (Dihydrofolate Reductase)

Alignment of 5 Dihydrofolate reductase proteins

- IWIVGGSGVYEEAMASPRCHRLYITKIMQKFDCDTFFPAIP-DSFREVAPDSD------
- P07807 IYVIGGGEVYSOIFSITDHWLITKINPLDKNATPAMDTFLDAKKLEEVFSEODPAOLKEF

••••** ** : . :.. :: . : . . :

P00375	VLSEVQ <mark></mark>	EEKGIKYKFEVYEKKD <mark></mark>	CLUSTAL W (1.82) multiple		
P00374	VLSDVQ <mark></mark>	EEKGIKYKFEVYEKND	sequence alignment		
P00378	VPADIQ <mark></mark>	EEDGIQYKFEVYQKSVLAQ	http://pir.georgetown.edu/		
P17719	MPLGVQ <mark></mark>	EENGIKFEYKILEKHS <mark></mark>	<u>cgi-bin/multialn.pl</u>		
P07807	LPPKVELPE'	TDCDQRYSLEEKGYCFEFTLYNRK	2/11/2013		
		** * ••• • ••	64		

Affine Gap Penalties

Note: no longer suffices to know just the score of best subproblem(s) – state matters: do they end with '-' or not.

Global Alignment with Affine Gap Penalties

V(i,j) = value of opt alignment ofS[1], ..., S[i] with T[1], ..., T[j]G(i,j) = ..., s.t. last pair matches S[i] & T[j]F(i,j) = ..., s.t. last pair matches S[i] & -E(i,j) = ..., s.t. last pair matches - & T[j]

Time: O(mn) [calculate all, O(1) each]

Affine Gap Algorithm

Gap penalty = $g + e^*(gaplen-1), g \ge e \ge 0$

$$V(i,0) = E(i,0) = V(0,i) = F(0,i) = -g-(i-1)*e$$

$$V(i,j) = \max(G(i,j), F(i,j), E(i,j))$$

$$G(i,j) = V(i-1,j-1) + \sigma(S[i],T[j])$$

$$F(i,j) = \max(F(i-1,j)-e, V(i-1,j)-g)$$

$$E(i,j) = \max(E(i,j-1)-e, V(i,j-1)-g)$$

$$C Why is the "V" case a "new gap" when V includes E & E?$$

$$F(i,j) = \max(F(i-1,j)-e, V(i,j-1)-g)$$

Other Gap Penalties

Score = f(gap length) Kinds, & best known alignment time

Summary: Alignment

Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution Ability to find/compare/experiment with "same" sequence

in other organisms is a huge win

- Surprisingly simple scoring works well in practice: score positions separately & add, usually w/ fancier gap model like affine
- Simple dynamic programming algorithms can find *optimal* alignments under these assumptions in poly time (product of sequence lengths)
- This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology, and elsewhere.

Summary: Dynamic Programming

Keys to D.P. are to

a) identify the subproblems (usually repeated/overlapping)

- b) solve them in a careful order so all small ones solved before they are needed by the bigger ones, and
- c) build table with solutions to the smaller ones so bigger ones just need to do table lookups (*no* recursion, despite recursive formulation implicit in (a))
- d) Implicitly, optimal solution to whole problem devolves to optimal solutions to subproblems

A really important algorithm design paradigm