Automating Tactile Graphics Translation

Richard Ladner
University of Washington

Blind Scientists and Engineers

TV Raman Computer Science Google Victor Wong EE Grad Student
Katsuhito Yamaguchi Physics Nihon University

University of Washington

Physics
Electrical Engineering
Inventor
Atmospheric Science

Bill Gerrey
Imke Durre, Ph.D.
William Skawinski
Professor, Chemistry

Professor, Chemistry

Blind Scientists and Engineers

H. David Wohlers
Professor, Chemistry

Geerat Vermeij, Ph.D.

Kent Cullers, Ph.D.
Grad Student Chemistry

TV Raman
Computer Science

Evolutionary Biologist

Blind Scientists and Engineers

Chieko Asakawa
Computer Scientist IBM

Sangyun Hahn
Ph.D. Student CSE

UW Students

Zach Lattin
Math Major
The Problem

- Tactual Perception
- Text
- Math
- Graphics
- Tactile Graphics Workflow
- Demo

Outline

Tactile Perception

- Resolution of human fingertip: 25 dpi
- Tactual field of perception is no bigger than the size of the fingertips of two hands
- Color information is replaced by texture information
- Visual bandwidth is 1,000,000 bits per second, tactile is 100 bits per second

Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.
- Critical fact: Fixed height and width
- Mode characters: cap and num.

Tiger Embosser

- 20 dpi (raised dots per inch)
- 7 height levels (only 3 or 4 are distinguishable)
- Prints Braille text and graphics
- Prints dot patterns for texture
- Invented by a blind man, John Gardner

Outline

- Tactual Perception
- Text
- Math
- Graphics
- Tactile Graphics Workflow
- Demo
Text

Outline

• Tactual Perception
• Text
• Math
• Graphics
• Tactile Graphics Workflow
• Demo

Math Translation

Math Translation Examples

\[
\sum_{i=0}^{\text{area}} 1 - x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Text Translation

The new畅言 Pickle group has any points in common is Quadrant
1. When the constraints of a linear programming problem cannot be satisfied simultaneously, the infeasibility is said to exist. This may mean that the constraints have been formulated incorrectly, simple inequalities must be changed, or that additional resources are required before the problem can be solved.

Math Translation

\[
\sum_{i=0}^{\text{area}} 1 - x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Outline

• Tactual Perception
• Text
• Math
• Graphics
• Tactile Graphics Workflow
• Demo

Automating the Process

• CS contributions
 – Machine learning
 – Computational geometry algorithms
 – Computer vision
 – Optimization algorithms
• Example
 – 1,080 figures
 – 6.5 minutes per figure

Finding Text

• Why not just use standard optical character recognition (OCR)?
 – OCR is not effective for graphical images.

• OCR is not effective for graphical images.
Features

Century Gothic

- $W =$ width of bounding box
- $H =$ height of bounding box
- $A =$ area of bounding box
- $R_i =$ number of black pixels in i-th slice where a slice is an angle of 360\circ. The total number of slices is n.

$C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Center is center of mass of black pixels

Machine Learning

- Training:
 - Sample the connected components and compute their features.
 - Use these features to train a Support Vector Machine (SVM).
- Finding:
 - For a new connected component compute its features.
 - Feed these features into the SVM.
Group characters logically

- Extracting a set of isolated characters from an image is insufficient
 - Need groups of Braille characters for easier placement
- Challenges
 - Text can be at many angles
 - Individual characters may be aligned along multiple axes

Our approach

- Step 1: User provides training set
 - Software examines defining features
- Step 2: Automatically find similar groups in remaining images
 A. Minimum spanning tree
 B. Discard useless edges
 C. Discard inconsistent edges
 D. Create merged groups

Minimum spanning tree (1)

Treat the centroid of each connected component as a node

Discard useless edges (2)

Discard inconsistent edges (3)

Final merge step (4)

Merge only if the resultant group is consistent
Braille Placement

- Text boxes of Braille will be of different size than the original text boxes
 - Mode characters
 - Contractions
 - Braille is fixed width

Example

- Left justified
- Right justified
- Centered
Outline

• Tactual Perception
• Text
• Math
• Graphics
• Tactile Graphics Workflow
• Demo

Subtask Pattern

- TGA batch process
- Photoshop and Illustrator scripts
- Omnipage batch manager
- Duxbury command line

Tactile Graphics Assistant

- TGA batch process
- Training Data

Available Books

 Hennessy and Patterson
 2002 Elsevier
 25 minutes per figure
- Advanced Mathematical Concepts, Precalculus with Applications
 1999 Glencoe/McGrav-Hill
 6.3 minutes per figure
- An Introduction to Modern Astrophysics
 Carroll and Ostlie
 1996 Addison-Wesley
 10.2 minutes per figure
- Discrete Mathematical Structures
 Kolman, Busby and Ross
 2003 Prentice Hall
 8.8 minutes per figure

Time per Figure

<table>
<thead>
<tr>
<th></th>
<th>Discrete Math</th>
<th>Precalculus</th>
<th>Astronomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>425</td>
<td>595</td>
<td>245</td>
</tr>
<tr>
<td>Classification</td>
<td>245</td>
<td>390</td>
<td>270</td>
</tr>
<tr>
<td>TGA</td>
<td>495</td>
<td>570</td>
<td>585</td>
</tr>
<tr>
<td>Omnipage</td>
<td>714</td>
<td>660</td>
<td>945</td>
</tr>
<tr>
<td>Photoshop</td>
<td>714</td>
<td>975</td>
<td>690</td>
</tr>
<tr>
<td>Duxbury</td>
<td>225</td>
<td>830</td>
<td>450</td>
</tr>
<tr>
<td>Illustrator</td>
<td>770</td>
<td>1335</td>
<td>1845</td>
</tr>
<tr>
<td>Workflow</td>
<td>350</td>
<td>1545</td>
<td>210</td>
</tr>
<tr>
<td>Total</td>
<td>4124</td>
<td>8765</td>
<td>6075</td>
</tr>
</tbody>
</table>

num figs 467 num figs 1080 num figs 508
min/fg 8.8 min/fg 6.3 min/fg 19.2
TGA Workflow

• Advantages
 – Much faster production
 – Batch processing instead of one figure at a time
 – Much tedious work is avoided

• Disadvantages
 – May be of lower quality than custom translation
 – A lot of technology needs to be mastered

One-offs vs. Mass Production

Outline

• Text
• Math
• Graphics
• Workflow
• Problem solving

Problem solving

• Each book presents a set of unique problems.
• We consider a few today
 – Classification of figures
 – Legends and colors
 – Text at an angle
 – Math in figures
 – Grids

Classes

Clean area 83
Clean lines 648
Complex 62
Grid clean 15
Grid overlap 113
No text 41
Overlapped text 94
Radial 53

Legends and Colors

• Legends may have to be enlarged.
• Colors may have to be replaced with textures.
Angled Text

- Braille should be printed horizontally.

Math

- Image → Math Image via TGA → LaTex via Infty Reader → Nemeth via Duxbury

Grids

- Grids may not work well in tactile form.

Future Research

- Include Audio with Touchpads
- Electro-rheological fluid displays

Demo of TGA