
5/7/17	

1	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSEP	590	–	Programming	Systems	
University	of	Washington	

Lecture	5:	Garbage	CollecDon	
	

Michael	Ringenburg	
Spring	2017	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Course	News	
•  PresentaDons	

–  Schedule	Posted	on	course	web	
•  Reminder:	No	class	on	May	2	
•  Will	try	to	start	catching	up	on	HW	grading	…	sorry	(no	TA)	
•  Today:	Garbage	collecDon	
•  May	9:	Potpourri	of	suggested	topics.		So	far	I’ve	had	

suggesDons	for	…	
–  Just-In-Time	(JIT)	compilaDon	
–  Query	opDmizaDon	
–  Type	Theory/Type	Checking	intro	–	slightly	outside	the	charter	
of	this	class	…	but	may	try	to	squeeze	it	in	with	more	of	a	focus	
on	checking	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 1	



5/7/17	

2	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Garbage	CollecDon	
References	

•  First	topic	we’ve	covered	that	I	haven’t	implemented	
(just	studied)	…	but	some	of	you	may	have?	

•  Some	great	references:	
–  Uniprocessor	Garbage	Collec4on	Techniques	
Wilson,	IWMM	1992	(longish	survey)	

–  The	Garbage	Collec4on	Handbook		
Jones,	Hosking,	Moss,	2012	(book)	

•  Today’s	slides	adapted	from	Hal	Perkins,	CSE	401	and	
501	
–  In	turn	adapted	from	slides	by	Vijay	Menon,	CSE	501,	Sp09	
–  Plus	addiDons	from	other	sources	as	noted	within	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 2	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Program	Memory	

•  Typically	divided	into	3	regions:	
– Global	/	StaDc:	fixed-size	at	compile	Dme;	exists	
throughout	program	lifeDme	

– Stack	/	AutomaDc:	per	funcDon,	automaDcally	
allocated	and	released	(local	variables)	

– Heap:	Explicitly	allocated	by	programmer	
•  Need	to	recover	storage	for	reuse	when	no	longer	
needed:	Manually	or	automaDcally	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 3	



5/7/17	

3	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Manual	Heap	Management	

•  Programmer	calls	free/delete/etc	when	done	
with	storage	

•  Pro	
–  Low	overhead	
–  Precise	

•  Con	
–  Error-prone	

•  Memory	Leaks	(don’t	free	when	done)	
•  Free	before	done	

– Difficult	to	debug	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 4	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Garbage	CollecDon	

•  AutomaDcally	reclaim	heap	memory	no	longer	
in	use	by	the	program	
–  Simplify	programming	
–  Beher	modularity	
– Avoids	huge	problems	with	dangling	pointers	
– Almost	required	for	type	safety	
–  But	not	a	panacea	

•  SDll	need	to	watch	for	stale	pointers,	GC’s	version	of	
“memory	leaks”	

•  Overhead	
•  The	dreaded	“pause	Dmes”	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 5	



5/7/17	

4	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Heap	CharacterisDcs	

•  Most	objects	are	small-ish		(olen	<	128	bytes)	
•  Object-oriented	and	funcDonal	code	allocates	
a	huge	number	of	short-lived	objects	

•  Want	allocaDon,	recycling	to	be	fast	and	low	
overhead	
– Serious	engineering	required	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 6	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

What	is	Garbage?	

•  An	object	is	live	if	it	is	sDll	in	use	
•  Need	to	be	conservaDve	
– OK	to	keep	memory	no	longer	in	use	
– Not	ok	to	reclaim	something	that	is	live	

•  An	object	is	garbage	if	it	is	not	live	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 7	



5/7/17	

5	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reachability	

•  Root	set	:	the	set	of	global	and	local	(stack/
register)	variables	visible	to	acDve	procedures	

•  Heap	objects	are	reachable		if:	
– They	are	directly	accessible	from	the	root	set	
– They	are	accessible	from	another	reachable	heap	
object	(pointers/references)	

•  Liveness	implies	reachability	(conservaDve	
approximaDon)	

•  Not	reachable	implies	garbage	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 8	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reachability,	illustrated	

From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		
licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	 9	



5/7/17	

6	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reachability	
•  Compiler	produces:	
– A	stack-map		at	GC	safe	points	

•  Stack	map:	enumerates	all	GC	roots	(e.g.,	global	variables,	
stack	variables,	live	registers)	

•  GC	safe	points:	Points	in	execuDon	where	we	are	guaranteed	
to	know	all	roots,	and	have	a	consistent	heap	(e.g.,	new(),	
method	entry,	method	exit,	etc).	

•  When	a	thread	reaches	a	safe	point,	check	if	the	
safe	point	is	needed	(e.g.,	a	GC	has	been	
scheduled).		If	so,	block.			
– Once	all	threads	blocked	at	safe	point,	GC	can	
proceed.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 10	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reference	CounDng	
Collectors	

•  Keep	extra	integer	associated	with	every	heap	
object	
– Set	to	1	when	object	allocated	
–  Increment	when	new	reference	established	
– Decrement	when	reference	disappears	(e.g.,	
pointers	stack	frame/scope	goes	away;	pointer	
assigned	different	value)	

– When	reference	count	==	0,	can	be	freed	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 11	



5/7/17	

7	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reference	CounDng	
Example	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 12	

ROOT
SET

HEAP SPACE

1

1

1

2

1

1

1

2

From	“Uniprocessor	Garbage	CollecDon	Techniques”,	Paul	R	Wilson	
	1992	InternaDonal	Workshop	on	Memory	Management	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reference	CounDng:		
The	Cycle	Problem	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 13	

ROOT
SET

HEAP SPACE

1

1

1

1

2

1

1

1

From	“Uniprocessor	Garbage	CollecDon	Techniques”,	Paul	R	Wilson	
	1992	InternaDonal	Workshop	on	Memory	Management	



5/7/17	

8	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Reference	CounDng:	
EvaluaDon	

•  Pros	
–  Simple	to	understand	
– No	large	pauses	to	clean:	just	free	anything	when	its	
RC	gets	to	0.		Important	for	real-Dme	applicaDons.	

•  Cons	
–  Cycles!	
–  Space	inefficient:	extra	integer	per	object	
–  Time	inefficient:	operaDons	on	every	pointer	change/
allocaDon/deallocaDon.		Can	get	rid	of	some	(e.g.,	
local	pointer	adjustments),	but	costs	sDll	generally	
higher	than	tracing	collectors.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 14	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Tracing	Collectors	

•  Mark	the	objects	reachable	from	the	root	set,	
then	perform	a	transiDve	closure	to	find	all	
reachable	objects	

•  All	unmarked	objects	are	dead	and	can	be	
reclaimed	

•  Various	algorithms:	mark-sweep,	copying,	
generaDonal…	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 15	



5/7/17	

9	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark-Sweep	AllocaDon	

•  MulDple	free	lists	organized	by	size	for	small	
objects	(e.g.,	8,	16,	24,	32	bytes);	addiDonal	
list	for	large	blocks	
– Regular	malloc	does	exactly	the	same	

•  AllocaDon	
– Grab	a	free	object	from	the	right	free	list	
– No	more	memory	of	the	right	size	triggers	a	
collecDon	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 16	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark-Sweep	CollecDon	

•  Mark	phase	–	find	the	live	objects	
– TransiDve	closure	from	root	set	marking	all	live	
objects	

•  Sweep	phase	
– Sweep	memory	for	unmarked	objects	and	return	
to	appropriate	free	list(s)	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 17	



5/7/17	

10	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark	Phase	

18	
From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		

licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark	Phase	

19	
From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		

licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	



5/7/17	

11	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark	Phase	

20	
From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		

licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark	Phase	

21	
From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		

licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	



5/7/17	

12	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark	Phase	

22	
From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		

licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Sweep	Phase	

23	
From	Douglas	Q	Hawkins,	h4ps://www.slideshare.net/dougqh/understanding-garbage-collec@on		

licensed	under	Crea@ve	Commons:	A4ribu@on-ShareAlike	License	(h4ps://crea@vecommons.org/licenses/by-sa/4.0/)	



5/7/17	

13	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Mark-Sweep	EvaluaDon	
•  Pro	
–  Space	efficiency	
–  Incremental	object	reclamaDon	

•  Con	
–  RelaDvely	slower	allocaDon	Dme	
–  Poor	locality	of	objects	allocated	at	around	the	same	
Dme	

–  Redundant	work	rescanning	long-lived	objects	
– May	lead	to	fragmentaDon	

•  SomeDmes	add	compacDon	
–  Long	pauses:	“Stop	the	world	I	want	to	collect”	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 24	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	Copying	
Collector	

•  Idea:	Divide	memory	in	half	
– Storage	allocated	from	one	half	of	memory	
– When	full,	copy	live	objects	from	old	half	(“from	
space”)	to	unused	half	(“to	space”)	&	swap	
semispaces	(“from”	becomes	“to”,	“to”	becomes	
“from”)	

•  Fast	allocaDon	–	next	chunk	of	to-space	
•  Requires	copying	collecDon	of	enDre	heap	
when	collecDon	needed	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 25	



5/7/17	

14	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	collecDon	
•  Same	noDon	of	root	set	and	

reachable		
•  Copy	each	object	when	first	

encountered	
•  Install	forwarding	pointers	in	from-

space	referring	to	new	copy	in	to-
space	

•  TransiDve	closure:	follow	pointers,	
copy,	and	update	as	it	scans	

•  Reclaims	enDre	“from	space”	in	
one	shot	
–  Swap	from-	and	to-space	when	copy	
done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 26	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	collecDon	
•  Same	noDon	of	root	set	and	

reachable		
•  Copy	each	object	when	first	

encountered	
•  Install	forwarding	pointers	in	from-

space	referring	to	new	copy	in	to-
space	

•  TransiDve	closure:	follow	pointers,	
copy,	and	update	as	it	scans	

•  Reclaims	enDre	“from	space”	in	
one	shot	
–  Swap	from-	and	to-space	when	copy	
done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 27	



5/7/17	

15	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	collecDon	
•  Same	noDon	of	root	set	and	

reachable		
•  Copy	each	object	when	first	

encountered	
•  Install	forwarding	pointers	in	from-

space	referring	to	new	copy	in	to-
space	

•  TransiDve	closure:	follow	pointers,	
copy,	and	update	as	it	scans	

•  Reclaims	enDre	“from	space”	in	
one	shot	
–  Swap	from-	and	to-space	when	copy	
done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 28	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	collecDon	
•  Same	noDon	of	root	set	and	

reachable		
•  Copy	each	object	when	first	

encountered	
•  Install	forwarding	pointers	in	from-

space	referring	to	new	copy	in	to-
space	

•  TransiDve	closure:	follow	pointers,	
copy,	and	update	as	it	scans	

•  Reclaims	enDre	“from	space”	in	
one	shot	
–  Swap	from-	and	to-space	when	copy	
done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 29	



5/7/17	

16	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	collecDon	
•  Same	noDon	of	root	set	and	

reachable		
•  Copy	each	object	when	first	

encountered	
•  Install	forwarding	pointers	in	from-

space	referring	to	new	copy	in	to-
space	

•  TransiDve	closure:	follow	pointers,	
copy,	and	update	as	it	scans	

•  Reclaims	enDre	“from	space”	in	
one	shot	
–  Swap	from-	and	to-space	when	copy	
done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 30	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	collecDon	
•  Same	noDon	of	root	set	and	

reachable		
•  Copy	each	object	when	first	

encountered	
•  Install	forwarding	pointers	in	from-

space	referring	to	new	copy	in	to-
space	

•  TransiDve	closure:	follow	pointers,	
copy,	and	update	as	it	scans	

•  Reclaims	enDre	“from	space”	in	
one	shot	
–  Swap	from-	and	to-space	when	copy	
done	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 31	



5/7/17	

17	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Semispace	Copying	
Collector	EvaluaDon	

•  Pro	
–  Fast	allocaDon	
–  Locality	of	objects	allocated	at	same	Dme	
–  Locality	of	objects	connected	by	pointers	(can	use	
depth-first	or	other	strategies	during	the	mark-copy	
phase)	

•  Con	
– Wastes	half	of	memory	
–  Redundant	work	rescanning	long-lived	objects	
–  Long	pauses:	“Stop	the	world	I	want	to	collect”	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 32	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

GeneraDonal	Collectors	

•  GeneraDonal	hypothesis:	young	objects	die	
more	quickly	than	older	ones	(Lieberman	&	
Hewih	‘83,	Ungar	‘84)	
– Bimodal	distribuDon	–	most	object	have	a	short	
life	span,	but	the	rest	tend	to	live	a	very	long	Dme	

•  Most	pointers	are	from	younger	to	older	
objects	(Appel	‘89,	Zorn	‘90)	

•  So,	organize	heap	into	young	and	old	regions,	
collect	young	space	more	olen	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 33	



5/7/17	

18	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

GeneraDonal	Collectors	

•  Divide	heap	into	two	spaces:	young,	old	
•  Allocate	new	objects	in	young	space	
•  When	young	space	fills	up,	collect	it	and	copy	surviving	
objects	to	old	space	
–  Refinement:	require	objects	to	survive	at	least	a	few	
collecDons	before	copying	

–  Generally	using	copying	collector	for	young	generaDon,	
since	small	(not	too	much	wasted	memory)	

•  When	old	space	fills,	collect	both	
–  Old	space	may	use	different	technique,	e.g.	mark-sweep	

•  Can	generalize	to	mulDple	generaDons	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 34	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Pointers	from	Old	to	New	
	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 35	

Younger Generation

Older Generation

ROOT
SET•  Pointers	from	old	to	

new	are	rare,	but	do	
occur	

•  What	do	we	do	
during	minor	GC	
(young	collecDon)?	
– Must	treat	these	
pointers	as	roots	

–  Can	use	indirecDon	
table	

–  Or,	mark	pointers	
that	were	changed	
in	old	generaDon	

From	“Uniprocessor	Garbage	
CollecDon	Techniques”,	Paul	R	Wilson	
	1992	InternaDonal	Workshop	on	

Memory	Management	



5/7/17	

19	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Younger Generation

Older Generation

ROOT
SET

Pointers	from	Old	to	New	
	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 36	

•  Pointers	from	old	to	
new	are	rare,	but	do	
occur	

•  What	do	we	do	
during	minor	GC	
(young	collecDon)?	
– Must	treat	these	
pointers	as	roots	

–  Can	use	indirecDon	
table	

–  Or,	mark	pointers	
that	were	changed	
in	old	generaDon	

From	“Uniprocessor	Garbage	
CollecDon	Techniques”,	Paul	R	Wilson	
	1992	InternaDonal	Workshop	on	

Memory	Management	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

GC	Tradeoffs	

•  Performance	
– Mark-sweep	olen	faster	than	semispace	
– GeneraDonal	beher	than	both	

•  Mutator	performance	
– Semispace	is	olen	fastest	
– GeneraDonal	is	beher	than	mark-sweep	

•  Overall:	generaDonal	is	a	good	balance	
•  But:	we	sDll	“stop	the	world”	to	collect	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 37	



5/7/17	

20	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Enhancements	
•  Parallel	copying	collector	

–  MulDple	threads	tracing	roots/copying	objects.		Each	thread	
responsible	for	a	subset	of	the	roots	and	a	segment	of	the	
object	table	

–  Original	parallel	collector	in	Hotspot	JVM	used	this	for	young	
generaDon	(old	generaDon	serial)	

•  Parallel	mark-sweep	
–  Same	idea,	except	marking	rather	than	copying.		Threads	
assigned	regions	of	heap	

–  To	compact:	IdenDfy	low	occupency	regions	to	move	objects	to.		
Thread	responsible	for	desDnaDon	region	does	copy	

–  New	parallel	collector	(“parallel	compacDng”)	in	Hotspot	JVM	
uses	this	for	old	generaDon	(young	sDll	uses	parallel	copying).	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 38	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Enhancements,	cont	
•  Concurrent	Mark-Sweep	(e.g.,	in	Hotspot)	

–  Goal:	Minimize	stop-the-world	long	pauses.		Increased	
responsiveness.	

–  Young	GeneraDon:	Parallel	Copying	Collector	(young	is	quick)	
–  Old	GeneraDon	has	three	phases:	

•  Ini@al	mark:	Short	pause	to	idenDfy	object	directly	reachable	from	
roots	

•  Concurrent	mark:	A	thread	or	threads	conDnue	to	trace	and	mark	
while	applica4on	con4nues	running.		May	miss	some	objects	since	
heap	is	changing.	

•  Remark:	Pause	while	parallel	mark	visits	anything	that	has	changed	
while	concurrent	mark	was	running	

•  Concurrent	sweep:	Collect	all	unmarked	objects	while	rest	of	
applica4on	con4nues	to	run.		No	compacDon.	

•  Concurrent	phases	can	also	be	done	incrementally.	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 39	



5/7/17	

21	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

G1	Collector	

•  Divide	heap	into	conDguous	regions	
– Concurrent	Mark	idenDfies	relaDve	ordering	of	
empDest	regions	

– Collect	empDest	regions	first	
– CollecDon	copies	live	objects	into	new	region	
(parallel	copying),	thus	compacDng	in	the	process	

– Collect	as	many	regions	as	you	can	given	pause	
Dme	constraints	
•  Try	to	hit	constraints,	but	best-effort/no	guarantee	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 40	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Compiler	&	RunDme	
Support	

•  GC	Dghtly	coupled	with	safe	runDme	(e.g.,	
Java,	CLR,	funcDonal	languages)	
– Total	knowledge	of	pointers	(type	safety)	
– Tagged	objects	with	type	informaDon	
– Compiler	maps	for	informaDon	
– Objects	can	be	moved;	forwarding	pointers	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 41	



5/7/17	

22	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

What	about	unsafe	
languages?	(e.g.,	C/C++)	

•  Boehm/Weiser	collector:	GC	sDll	possible	
without	compiler/runDme	cooperaDon(!)	
–  If	it	looks	like	a	pointer,	it’s	a	pointer	
– Mark-sweep	only	–	GC	doesn’t	move	anything	
– Allows	GC	in	C/C++	but	constraints	on	pointer	bit-
twiddling	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 42	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

And	a	bit	of	perspecDve…	

•  AutomaDc	GC	has	been	around	since	LISP	I	in	
1958	

•  Ubiquitous	in	funcDonal	and	object-oriented	
programming	communiDes	for	decades	

•  Mainstream	since	Java	(mid-90s)	
•  Now	convenDonal	wisdom?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 43	



5/7/17	

23	

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

CSE341: Programming Languages 
 

Lecture 1 
Course Mechanics 

ML Variable Bindings 

Dan Grossman 
Fall 2011 

Discussion	
•  Tracing	and	Reference	CounDng	…	algorithmic	
duals?	
–  (They	had	to	slightly	modify	the	formulaDon	of	
reference	counDng)	

•  Argued	that	any	opDmized	collector	can	be	
viewed	as	a	hybrid	

•  What	are	the	implicaDons	of	this	Duality?	
•  What	does	this	imply	about	the	design	space?	
•  Can	you	think	of	algorithms	that	don’t	fit	this	
model?	

Spring	2017	 UW	CSEP	590	(PMP	Programming	Systems):	
Ringenburg	 44	


