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Michael Ringenburg
Spring 2017

Course News

* Submit presentation topic proposals by April 14

— If you would like to work with a partner, both of you will have to
present, and | will expect a more in depth/longer presentation

— We're up to 19 students — tricky to fit >18 into final 3 weeks. Let me
know if you’d be willing to present May 9.
* Otherwise may have to come early or stay late one class (we’ll vote)
* Today:
— Finish discussing optimization techniques:
* A couple more dataflow examples
* SSA Form

— Register allocation via graph coloring

* After that, broaden our horizons a bit and look at other types of
programming systems
— Next week: Specialized programming systems for Big Data
— Following week: Garbage collection

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17



4/14/17

Dataflow, Continued
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’ Example: Reaching
Definitions

* A write (definition) of a variable reaches a read if
the read might use the defined value.

* Formally: A definition d of some variable v
reaches operation j if and only if i reads the
value of v and there is a path from d to/ that
does not define v (i.e., i might use value defined
at d)

* Uses

— Find all of the possible definition points for a variable
in an expression
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’ Equations for Reaching
Definitions

* Sets

— DEFOUT(b) — set of definitions in b that reach the end of b (i.e., not
subsequently redefined in b). Generates.

— SURVIVED(b) — set of all definitions not obscured by a definition in
b. Doesn’t kill.

— REACHES(b) — set of definitions that reach b
* Propagate forward through CFG

* Equation — definition reaches b if any predecessor of b
generates it, or if it reaches any predecessor and that
predecessor does not kill it:

REACHES(b) = U, reas5) DEFOUT(p) U (REACHES(p) N SURVIVED(p))
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’ Using Dataflow
Information

* A few examples of possible transformations...
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’ Classic Common-
Subexpression Elimination

* Inastatements:t:=xopy,ifxopyis
available at s (from last week) then it need
not be recomputed

* Compute reaching expressions i.e., statements
n: v :=x op y such that the path fromntos
does not compute x op y or define x ory
— As we saw in last week’s example, available

expressions may be available from different places
in different paths (e.g., 5*n earlier).
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’ Classic CSE

* If x opyis defined at n and reaches s
— Create new temporary w
— Rewrite n as
n:w:=xopy
n:v:i=w
— If multiple reaching definition points, rewrite all of
them
— Modify statement s to be
s:ti=w
— (Rely on copy propagation to remove extra
assignments if not really needed)
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’ Constant Propagation

* Suppose we have
— Statement d: t := ¢, where c is constant
— Statement n that uses t

* |f d reaches n and no other definitions of t
reach n, then rewrite n to use c instead of t

— Or if all reaching definitions set t to same constant
C.
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’ Copy Propagation

* Similar to constant propagation
* Setup:

— Statementd: t:=z

— Statement n uses t

* If d reaches n and no other definition of t reaches
n, and there is no definition of z on any path from
d to n, then rewrite n to use z instead of t

— We saw earlier how this can help remove dead
assignments
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’ Copy Propagation
Tradeoffs
* Downside is that this can increase the lifetime

of variable z and increase need for registers or
memory traffic

e But it can expose other optimizations, e.g.,
a:i=y+z
u:=y
c:=u+z // Copy propagation makes thisy + z
— After copy propagation we can recognize the
common subexpressions
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’ Dead Code Elimination

* If we have an instruction
sta:=bopc
and a is not live-out after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

— E.g., if b or c are a function call, they may have
unknown side effects.
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* General framework for discovering facts about

programs

— Although not the only possible story
* And then: facts open opportunities for code

improvement

* Next up: SSA (single static assignment) form —
transform program to a new form where each
variable has only a single definition.

Dataflow...

— Can make many optimizations/analyses more efficient

Spring 2017
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SSA Form
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’ Next Topic: SSA Form

* SSA (Single Static Assignment) is a very common
IR used by optimizing compilers

— Makes many analyses (and thus optimizations) more
efficient.

— Key property: Each variable has exactly one static
definition. May have multiple dynamic definitions,
e.g., a loop.
* Our next topic: An overview of the SSA IR
— Constructing SSA graphs
— SSA-based optimizations
— Converting back from SSA form
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’ Motivation:
Def(ine)-Use Chains
* Common dataflow analysis problem: Find all sites

where a variable is used, or find the possible
definition sites of a variable used in an expression

* Traditional solution: def-use (DU) chains —
additional data structure on top of the IR

— Link each statement defining a variable to all
statements that use it

— Link each use of a variable to its possible definitions
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0’ DU-Chain Drawbacks

« Expensive: if a typical variable has N uses
and M definitions, total cost is O(N * M *
numVariables)

— Would be nice if cost were proportional to the
size of the program

« Unrelated uses of the same variable are
mixed together
— Complicates analysis

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

’ SSA:
Static Single Assignment

« IR where each variable has only one
definition in the program text
— This is a single static definition, but it may be

in a loop that is executed dynamically many
times
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0’ SSA in Basic Blocks

Idea: For each original variable x, create a new
variable x,, at the nt" definition of the original x.
Subsequent uses of x use Xx,, until the next def.

* Original « SSA
a:=x+y a; =x+y
b:=a-1 b,:=a;-1
a:=y+b a,:=y+b
b:=x*4 b,:=x*4
a:=a+b a;i=a,+b,

- UW CSEP 590 (PMP Programming System)
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« The issue is how to handle merge points in the

CFG
if (.) if (.
a = x; a,;
else > else
a=y; a,
b = a; b, =
Spring 2017 UW CSEP 590 (PMP Programming Systems)
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Merge Points
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= X3

=Y
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0’ Merge Points

. 'CI'EE issue is how to handle merge points in the

if () if ()
a = X; a; = Xj
else > else
a =y; a, =Y;
b = a; a; = ®(a,, ay);
b, = a;;

« Solution: introduce a ®-function a5 := ®(a;, a,)

+ Meaning: a; is assigned either a,or a, depending
on whic control path is used to reach the ©-
function
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’ Another Example

Original SSA

b1 = M[x]

a; := O(ay, a,)
Cl = a3 + bl
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How Does ® “Know”
What to Pick?

« ®O-functions seem a bit “magical” — how do
they know what value to pick??

« They don’ t actually need to, because they
don't exist at run-time ...

— When we're done using the SSA IR, we
translate back out of SSA form, removing all
®-functions.

— For analysis, all we typically need to know is
the connection of uses to definitions — no
need to “execute” anything.
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0’ Example With Loop

Original SSA
3 :=0 * Loop back edges also
a:=0 represent merge points,
a; := (ay, a,) and thus require ®
\ b, := ®(by, b,) functions.
b:=a+1 G, 1= O(cy, ¢4) * Notes:
ci=c+b byi=a;+1 * ay, by, ¢, are initial
a:=bx*2 C =G +b, values of a, b, con
ifa<N a:=b,*2 block entry

ifa, <N .
2 * b, is dead - can
delete later
return ¢
ﬁ e
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’ Converting To SSA Form

 Basic idea
— First, add ®-functions
— Then, rename all definitions and uses of
variables by adding subscripts
« Renaming is straightforward. Inserting ®-
functions is where things get a little tricky.
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0’ Inserting ®-Functions

« Could simply add ®-functions for every
variable at every join point

« But
— Wastes way too much space and time
— Not needed
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’ When to Insert a
®-Function

« We need a ®-function for variable a at entry to block
Z whenever

— There are blocks x and y, both containing definitions of a,
and X =y

— There are nonempty paths from x to z and from y to z
— These paths have no common nodes other than z
* i.e,, this is where the paths first merge
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0’ Some Details

 The start node of the control flow graph is
considered to define every variable (possibly
just to Undefined)

— Makes following construction simpler
« Each ®-function itself defines a variable,

which may create the need for a new ©-
function.

— So we need to keep adding®-functions until
things converge (no more changes).

« How do we do this efficiently?
— Using a new concept: dominance
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» Definition

Dominators

— A block x dominates a block y if and only if every path
from the entry of the control-flow graph to y includes x

By definition, x dominates x
« We can associate a Dom(inator) set with each CFG

node

— The set of all basic blocks that must execute before x
— | Dom(x) | =21

» Properties:

— Transitive: if a dom b and b dom ¢, then a dom ¢
— No cycles, thus can view dominators as a tree

Spring 2017
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Dominator Tree
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0’ Dominators and SSA

» Important property of SSA: definitions must
dominate uses

— In other words, the single assignment must occur

prior to any uses of the variable. (Although that single
assignment may just be the start node assignment of
“Undefined”.)

* More specifically:

— If x := @(...,X;,...) in block n, then the definition of
x; dominates the'ith predecessor of n

— If x is used in a non-® statement in block n, then
the definition of x dominates
block n
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’ Dominance Frontier (1) (i

 To get a practical algorithm for Elacing (OF
functions, we need to avoid looking at all
combinations of nodes leading from x to y

« Instead, use the dominator tree in the flow
graph.
— Place merges just beyond the end of the
definitions” dominance.

« The first point where they may receive a value from an
alternate definition.

— This follows directly from the previous properties:
« O-function means predecessors are dominated by defs
* Non ® usage means dominated by def

— This is referred to as the dominance frontier.

Spring 2017 UW CSEP 590 (PMP Programming Systems) 32
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’ Dominance Frontier (2) (i

« Definitions

— X strictly dominates y if x dominates y and
X=Y
— The dominance frontier of a node x is the set of
all nodes w such that x dominates a predecessor
of w, but x does not strictly dominate w
+ Interestingly, this means that x can be in its own
dominance frontier! This can happen if you have a back
edge to x (x is the head of a loop).
 Essentially, the dominance frontier is the

border between dominated and undominated
nodes
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a . = DominanceFrontier(x)
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. = DominanceFrontier(x)
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L =x
. = DominanceFrontier(x)
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1=
. = DominanceFrontier(x)
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L =x
e . = DominanceFrontier(x)
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a . = DominanceFrontier(x)
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S

. = DominanceFrontier(x)
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. = DominanceFrontier(x)
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0’ Placing ®-Functions

« If a node x contains the definition of variable a,
then every node in the dominance frontier of x
needs a ®-function for a
— Idea: Everything dominated by x will see x's

definition. Dominance frontier represents first nodes
we could have reached via an alternate path, which
will have an alternate reaching definition (recall that
the entry defines everything).
« Why does this work for loops? Hint: Strict dominance ...
— Since the ®-function itself is a definition, this needs to
be iterated until it reaches a fixed-point

« Theorem: this algorithm places exactly the same

set of ®-functions as the path criterion given
previously.
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’ Placing ®-Functions:
Details

» The basic steps are:

1. Compute the dominance frontiers for each node
in the control flow graph

2. Insert just enough ®-functions to satisfy the
criterion. Use a worklist algorithm to avoid
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of variable a to be a;, a,, a,

UW CSEP 590 (PMP Programming Systems)
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’ SSA Optimizations

« Advantage of SSA: Makes many
optimizations and analyses simpler and
more efficient.

— We'll show a couple examples.

 But first, what do we know? (i.e., what
information is kept in the SSA graph?)
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a SSA Data Structures

 Statement: links to containing block, next
and previous statements, variables defined,
variables used.

« Variable: link to its (single) definition
statement and (possibly multiple) use sites

 Block: List of contained statements, ordered
list of predecessors, successor(s)

UW CSEP 590 (PMP Programming Systems)
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a Dead-Code Elimination

« A variable is live if and only if its list of uses is
not empty(!)

— Without SSA, possibly many stores to each variable.
Have to disambiguate which might be used. With
SSA each store defines a new variable, so this
becomes trivial ...

* Algorithm to delete dead code:
while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it

— Need to remove this statement from the list of uses
for its operand variables — which may cause those
variables to become dead
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Sparse Simple Constant
Propagation (SSCP)

« If cisa constant in v := ¢, any use of v can
be replaced by ¢

— Then update every use of v to use constant ¢
« Ifthec’sinv:=®(c, ¢, ..., ¢,) are all the
same constant ¢ (or “Undefined” via start node, if
you like), we can replace this with v := ¢
 Can also incorporate copy propagation,

constant folding, and others in the same
worklist algorithm

Spring 2017 UW CSEP 590 (PMP Programming Systems)
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Sparse Simple Constant
Propagation

W := list of all statements in SSA program
while W is not empty
remove some statement S from W
if Sis vi=0(c, ¢, ..., ©), replace S with v:i=c
if Sisvi=c
delete S from the program
for each statement T that uses v
substitute cforvin T
add Tto W
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Converting Back from
SSA

 Unfortunately, real machines do not
include a @ instruction

 So after analysis, optimization, and
transformation, need to convert back to a
“®-less” form for execution
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Q Translating ®-functions

« The meaning of X := ®(Xy, X5, ..., X,) IS
“set x := x, if arriving on edge 1, set x:=
X, if arriving on edge 2, etc.”

« So, for each i, insert x := x; at the end of
predecessor block i

 Rely on copy propagation and coalescing
in register allocation to eliminate
redundant moves
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o2 SSA

« There are many details needed to fully
and efficiently implement SSA, but these
are the main ideas

— Most modern compiler texts give details:

» One of my favorites: Engineering a Compiler, Cooper
& Torczon, 2nd edition

« SSA is used in most modern optimizing
compilers & has been retrofitted into many
older ones (e.g., gcc)
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Register Allocation (Briggs-Chaitin)
Switch to slides courtesy of Preston Briggs
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