CSEP 590 — Programming Systems
University of Washington

Lecture 3: SSA, Register Allocation

Michael Ringenburg
Spring 2017

Course News

* Submit presentation topic proposals by April 14

— If you would like to work with a partner, both of you will have to
present, and | will expect a more in depth/longer presentation

— We're up to 19 students — tricky to fit >18 into final 3 weeks. Let me
know if you’d be willing to present May 9.
* Otherwise may have to come early or stay late one class (we’ll vote)
* Today:
— Finish discussing optimization techniques:
* A couple more dataflow examples
* SSA Form

— Register allocation via graph coloring

* After that, broaden our horizons a bit and look at other types of
programming systems
— Next week: Specialized programming systems for Big Data
— Following week: Garbage collection

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

4/14/17

Dataflow, Continued

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Example: Reaching
Definitions

* A write (definition) of a variable reaches a read if
the read might use the defined value.

* Formally: A definition d of some variable v
reaches operation j if and only if i reads the
value of v and there is a path from d to/ that
does not define v (i.e., i might use value defined
at d)

* Uses

— Find all of the possible definition points for a variable
in an expression

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Equations for Reaching
Definitions

* Sets

— DEFOUT(b) — set of definitions in b that reach the end of b (i.e., not
subsequently redefined in b). Generates.

— SURVIVED(b) — set of all definitions not obscured by a definition in
b. Doesn’t kill.

— REACHES(b) — set of definitions that reach b
* Propagate forward through CFG

* Equation — definition reaches b if any predecessor of b
generates it, or if it reaches any predecessor and that
predecessor does not kill it:

REACHES(b) = U, reas5) DEFOUT(p) U (REACHES(p) N SURVIVED(p))

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Using Dataflow
Information

* A few examples of possible transformations...

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

’ Classic Common-
Subexpression Elimination

* Inastatements:t:=xopy,ifxopyis
available at s (from last week) then it need
not be recomputed

* Compute reaching expressions i.e., statements
n: v :=x op y such that the path fromntos
does not compute x op y or define x ory
— As we saw in last week’s example, available

expressions may be available from different places
in different paths (e.g., 5*n earlier).

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Classic CSE

* If x opyis defined at n and reaches s
— Create new temporary w
— Rewrite n as
n:w:=xopy
n:v:i=w
— If multiple reaching definition points, rewrite all of
them
— Modify statement s to be
s:ti=w
— (Rely on copy propagation to remove extra
assignments if not really needed)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

’ Constant Propagation

* Suppose we have
— Statement d: t := ¢, where c is constant
— Statement n that uses t

* |f d reaches n and no other definitions of t
reach n, then rewrite n to use c instead of t

— Or if all reaching definitions set t to same constant
C.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Copy Propagation

* Similar to constant propagation
* Setup:

— Statementd: t:=z

— Statement n uses t

* If d reaches n and no other definition of t reaches
n, and there is no definition of z on any path from
d to n, then rewrite n to use z instead of t

— We saw earlier how this can help remove dead
assignments

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

4/14/17

’ Copy Propagation
Tradeoffs
* Downside is that this can increase the lifetime

of variable z and increase need for registers or
memory traffic

e But it can expose other optimizations, e.g.,
a:i=y+z
u:=y
c:=u+z // Copy propagation makes thisy + z
— After copy propagation we can recognize the
common subexpressions

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Dead Code Elimination

* If we have an instruction
sta:=bopc
and a is not live-out after s, then s can be
eliminated

— Provided it has no implicit side effects that are
visible (output, exceptions, etc.)

— E.g., if b or c are a function call, they may have
unknown side effects.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

11

* General framework for discovering facts about

programs

— Although not the only possible story
* And then: facts open opportunities for code

improvement

* Next up: SSA (single static assignment) form —
transform program to a new form where each
variable has only a single definition.

Dataflow...

— Can make many optimizations/analyses more efficient

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

12

Spring 2017

SSA Form

UW CSEP 590 (PMP Programming Systems)
Ringenburg

13

4/14/17

’ Next Topic: SSA Form

* SSA (Single Static Assignment) is a very common
IR used by optimizing compilers

— Makes many analyses (and thus optimizations) more
efficient.

— Key property: Each variable has exactly one static
definition. May have multiple dynamic definitions,
e.g., a loop.
* Our next topic: An overview of the SSA IR
— Constructing SSA graphs
— SSA-based optimizations
— Converting back from SSA form

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

14

’ Motivation:
Def(ine)-Use Chains
* Common dataflow analysis problem: Find all sites

where a variable is used, or find the possible
definition sites of a variable used in an expression

* Traditional solution: def-use (DU) chains —
additional data structure on top of the IR

— Link each statement defining a variable to all
statements that use it

— Link each use of a variable to its possible definitions

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

4/14/17

0’ DU-Chain Drawbacks

« Expensive: if a typical variable has N uses
and M definitions, total cost is O(N * M *
numVariables)

— Would be nice if cost were proportional to the
size of the program

« Unrelated uses of the same variable are
mixed together
— Complicates analysis

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

’ SSA:
Static Single Assignment

« IR where each variable has only one
definition in the program text
— This is a single static definition, but it may be

in a loop that is executed dynamically many
times

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

17

0’ SSA in Basic Blocks

Idea: For each original variable x, create a new
variable x,, at the nt" definition of the original x.
Subsequent uses of x use Xx,, until the next def.

* Original « SSA
a:=x+y a; =x+y
b:=a-1 b,:=a;-1
a:=y+b a,:=y+b
b:=x*4 b,:=x*4
a:=a+b a;i=a,+b,

- UW CSEP 590 (PMP Programming System)

Ringenburg

18

P

« The issue is how to handle merge points in the

CFG
if (.) if (.
a = x; a,;
else > else
a=y; a,
b = a; b, =
Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

Merge Points

2

= X3

=Y

19

4/14/17

10

0’ Merge Points

. 'CI'EE issue is how to handle merge points in the

if () if ()
a = X; a; = Xj
else > else
a =y; a, =Y;
b = a; a; = ®(a,, ay);
b, = a;;

« Solution: introduce a ®-function a5 := ®(a;, a,)

+ Meaning: a; is assigned either a,or a, depending
on whic control path is used to reach the ©-
function

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

20

’ Another Example

Original SSA

b1 = M[x]

a; := O(ay, a,)
Cl = a3 + bl

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

21

4/14/17

11

How Does ® “Know”
What to Pick?

« ®O-functions seem a bit “magical” — how do
they know what value to pick??

« They don’ t actually need to, because they
don't exist at run-time ...

— When we're done using the SSA IR, we
translate back out of SSA form, removing all
®-functions.

— For analysis, all we typically need to know is
the connection of uses to definitions — no
need to “execute” anything.

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017 22

0’ Example With Loop

Original SSA
3 :=0 * Loop back edges also
a:=0 represent merge points,
a; := (ay, a,) and thus require ®
\ b, := ®(by, b,) functions.
b:=a+1 G, 1= O(cy, ¢4) * Notes:
ci=c+b byi=a;+1 * ay, by, ¢, are initial
a:=bx*2 C =G +b, values of a, b, con
ifa<N a:=b,*2 block entry

ifa, <N .
2 * b, is dead - can
delete later
return ¢
ﬁ e

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

4/14/17

12

’ Converting To SSA Form

 Basic idea
— First, add ®-functions
— Then, rename all definitions and uses of
variables by adding subscripts
« Renaming is straightforward. Inserting ®-
functions is where things get a little tricky.

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

24

0’ Inserting ®-Functions

« Could simply add ®-functions for every
variable at every join point

« But
— Wastes way too much space and time
— Not needed

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

13

’ When to Insert a
®-Function

« We need a ®-function for variable a at entry to block
Z whenever

— There are blocks x and y, both containing definitions of a,
and X =y

— There are nonempty paths from x to z and from y to z
— These paths have no common nodes other than z
* i.e,, this is where the paths first merge

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

26

0’ Some Details

 The start node of the control flow graph is
considered to define every variable (possibly
just to Undefined)

— Makes following construction simpler
« Each ®-function itself defines a variable,

which may create the need for a new ©-
function.

— So we need to keep adding®-functions until
things converge (no more changes).

« How do we do this efficiently?
— Using a new concept: dominance

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

27

4/14/17

14

P

» Definition

Dominators

— A block x dominates a block y if and only if every path
from the entry of the control-flow graph to y includes x

By definition, x dominates x
« We can associate a Dom(inator) set with each CFG

node

— The set of all basic blocks that must execute before x
— | Dom(x) | =21

» Properties:

— Transitive: if a dom b and b dom ¢, then a dom ¢
— No cycles, thus can view dominators as a tree

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

28

Spring 2017

UW CSEP 590 (PMP Programming Systems)
Ringenburg

29

4/14/17

15

Dominator Tree

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

0’ Dominators and SSA

» Important property of SSA: definitions must
dominate uses

— In other words, the single assignment must occur

prior to any uses of the variable. (Although that single
assignment may just be the start node assignment of
“Undefined”.)

* More specifically:

— If x := @(...,X;,...) in block n, then the definition of
x; dominates the'ith predecessor of n

— If x is used in a non-® statement in block n, then
the definition of x dominates
block n

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

31

4/14/17

16

’ Dominance Frontier (1) (i

 To get a practical algorithm for Elacing (OF
functions, we need to avoid looking at all
combinations of nodes leading from x to y

« Instead, use the dominator tree in the flow
graph.
— Place merges just beyond the end of the
definitions” dominance.

« The first point where they may receive a value from an
alternate definition.

— This follows directly from the previous properties:
« O-function means predecessors are dominated by defs
* Non ® usage means dominated by def

— This is referred to as the dominance frontier.

Spring 2017 UW CSEP 590 (PMP Programming Systems) 32
° Ringenburg

’ Dominance Frontier (2) (i

« Definitions

— X strictly dominates y if x dominates y and
X=Y
— The dominance frontier of a node x is the set of
all nodes w such that x dominates a predecessor
of w, but x does not strictly dominate w
+ Interestingly, this means that x can be in its own
dominance frontier! This can happen if you have a back
edge to x (x is the head of a loop).
 Essentially, the dominance frontier is the

border between dominated and undominated
nodes

Spring 2017 UW CSEP 590 (PMP Programming Systems) 33
° Ringenburg

4/14/17

17

[]-x

. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - Stl’iCtDOm(X) 34
Ringenburg

-

a . = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - Stl’iCtDOm(X) 35
Ringenburg

4/14/17

18

. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 36
Ringenburg

L =x
. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 37
Ringenburg

4/14/17

19

1=
. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(x) 38
Ringenburg

(1

L =x
e . = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(x) 39
Ringenburg

4/14/17

20

i

a . = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 40
Ringenburg

D

. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) M
Ringenburg

4/14/17

21

-

. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 2
Ringenburg

D

e . = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 3
Ringenburg

4/14/17

22

S

. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 24
Ringenburg

Dl

. = DominanceFrontier(x)

Spring 2017 UW CSEP 590 (PMP Programming Systems. - StrictDom(X) 45
Ringenburg

4/14/17

23

. = DominanceFrontier(x)

UW CSEP 590 (PMP P e g Syst :
Spring 2017 90 (rogramming sys ng. = StrlctDom(X) 46

Ringenburg

0’ Placing ®-Functions

« If a node x contains the definition of variable a,
then every node in the dominance frontier of x
needs a ®-function for a
— Idea: Everything dominated by x will see x's

definition. Dominance frontier represents first nodes
we could have reached via an alternate path, which
will have an alternate reaching definition (recall that
the entry defines everything).
« Why does this work for loops? Hint: Strict dominance ...
— Since the ®-function itself is a definition, this needs to
be iterated until it reaches a fixed-point

« Theorem: this algorithm places exactly the same

set of ®-functions as the path criterion given
previously.

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg 4

4/14/17

24

’ Placing ®-Functions:
Details

» The basic steps are:

1. Compute the dominance frontiers for each node
in the control flow graph

2. Insert just enough ®-functions to satisfy the
criterion. Use a worklist algorithm to avoid
reexamining nodes unnecessarily

3. Walk the dominator tree and rename the
different definitions of variable a to be a;, a,, a,

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

48

’ SSA Optimizations

« Advantage of SSA: Makes many
optimizations and analyses simpler and
more efficient.

— We'll show a couple examples.

 But first, what do we know? (i.e., what
information is kept in the SSA graph?)

UW CSEP 590 (PMP Programming Systems)
2

Spring 2017 Ringenburg

49

4/14/17

25

a SSA Data Structures

 Statement: links to containing block, next
and previous statements, variables defined,
variables used.

« Variable: link to its (single) definition
statement and (possibly multiple) use sites

 Block: List of contained statements, ordered
list of predecessors, successor(s)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

a Dead-Code Elimination

« A variable is live if and only if its list of uses is
not empty(!)

— Without SSA, possibly many stores to each variable.
Have to disambiguate which might be used. With
SSA each store defines a new variable, so this
becomes trivial ...

* Algorithm to delete dead code:
while there is some variable v with no uses

if the statement that defines v has no
other side effects, then delete it

— Need to remove this statement from the list of uses
for its operand variables — which may cause those
variables to become dead

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

26

Sparse Simple Constant
Propagation (SSCP)

« If cisa constant in v := ¢, any use of v can
be replaced by ¢

— Then update every use of v to use constant ¢
« Ifthec’sinv:=®(c, ¢, ..., ¢,) are all the
same constant ¢ (or “Undefined” via start node, if
you like), we can replace this with v := ¢
 Can also incorporate copy propagation,

constant folding, and others in the same
worklist algorithm

Spring 2017 UW CSEP 590 (PMP Programming Systems)

Ringenburg

Sparse Simple Constant
Propagation

W := list of all statements in SSA program
while W is not empty
remove some statement S from W
if Sis vi=0(c, ¢, ..., ©), replace S with v:i=c
if Sisvi=c
delete S from the program
for each statement T that uses v
substitute cforvin T
add Tto W

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

27

Converting Back from
SSA

 Unfortunately, real machines do not
include a @ instruction

 So after analysis, optimization, and
transformation, need to convert back to a
“®-less” form for execution

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Q Translating ®-functions

« The meaning of X := ®(Xy, X5, ..., X,) IS
“set x := x, if arriving on edge 1, set x:=
X, if arriving on edge 2, etc.”

« So, for each i, insert x := x; at the end of
predecessor block i

 Rely on copy propagation and coalescing
in register allocation to eliminate
redundant moves

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

28

o2 SSA

« There are many details needed to fully
and efficiently implement SSA, but these
are the main ideas

— Most modern compiler texts give details:

» One of my favorites: Engineering a Compiler, Cooper
& Torczon, 2nd edition

« SSA is used in most modern optimizing
compilers & has been retrofitted into many
older ones (e.g., gcc)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

Register Allocation (Briggs-Chaitin)
Switch to slides courtesy of Preston Briggs

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

29

4/14/17

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

58

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

59

30

4/14/17

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

61

31

Spring 2017

Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

Spring 2017

Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)
Ringenburg

4/14/17

32

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

33

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

66

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

34

’ Diamond Graph (2 color)

UW CSEP 590 (PMP Programming Systems)

Spring 2017 Ringenburg

4/14/17

35

