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Dataflow Computing Models, Languages, and 
Machines for Intelligence Computations 

JAYANTHA HERATH, MEMBER, IEEE, YOSHINOR1 YAMAGUCHI, NOBUO SAITO, MEMBER, IEEE, A N D  
TOSHITSUGU YUBA 

Abstract-Dataflow computing, a radical departure from von Neu- 
mann computing, supports multiprocessing on a massive scale and plays 
a major role in permitting intelligence computing machines to achieve 
ultrahigh speeds. Intelligence computations consist of large complex 
numerical and nonnumerical computations. Efficient computing models 
are  necessary to represent intelligence computations. An abstract com- 
puting model, a base language specification for the abstract model, 
high-level and low-level language design to map parallel algorithms to 
abstract computing model, parallel architecture design to support 
computing model and design of support software to map computing 
model to arcTiitecture a re  steps in constructing computing systems. This 
paper concentrates on dataflow computing for intelligence computa- 
tions and presents a comparison of dataflow computing models, lan- 
guages and dataflow computing machines for numerical and nonnu- 
merical computations. The high level language-graph transformation 
that must be performed to achieve high performance for numerical and 
nonnumerical programs when executed in a dataflow computing envi- 
ronment a re  described using the DCBL transformations and applied 
to the Lisp language. Some general problems in dataflow computing 
machines are  discussed. Performance evaluation measurements ob- 
tained by executing benchmark programs in the ETL's nonnumerical 
dataflow computing environment, the EM-3, are  presented. 

Index Terms-Architecture, dataflow, functional and logic program- 
ming, parallel computation, performance analysis. 

I. INTRODUCTION 
TELLIGENCE computations compute characteristics I" associated with human intelligence. They consist of 

large numerical and nonnumerical computations, includ- 
ing understanding, learning, reasoning, and problem 
solving. An ultrahigh speed computing system is neces- 
sary to compute such complex computations. The demand 
for ultrahigh speed computing machines for analyzing 
physical processes, solving scientific problems, and in- 
telligence computations is increasing every day. The ma- 
jor difficulty in satisfying this demand in uniprocessing is 
the physical constraints of hardware and the sequential 
and centralized control in the von Neumann abstract com- 
puting model. 

Sequential and deterministic von Neumann machines 
are not oriented to intelligence computations involving 
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parallel and nondeterministic computations. The alterna- 
tive to sequential processing is parallel processing with 
high density devices. To solve nondeterministic prob- 
lems, it is necessary to research efficient computing 
models and more efficient heuristics. The machines pro- 
cessing intelligence computations must be dynamic. Ef- 
ficient control mechanisms for load balancing of re- 
sources, communicating networks, garbage collectors, 
and schedulers are important in such machines. Computer 
hardware improved from vacuum tubes to VLSI but there 
has been no significant change in the sequential abstract 
computing model, sequential algorithms, languages and 
architecture. Circuit improvements that neglect the par- 
allelism of problems do not lead to achieve higher com- 
puting speeds. Higher speeds in uniprocessor systems are 
achieved by using parallel control mechanisms such as 
interleaved memory, instruction fetch and execution over- 
lap, extended instruction set, I/O processors, smaller and 
faster local storages and multiple execution units. 

Parallelism in problems can be detected by users and 
compilers. New computing models are necessary to ex- 
ploit the parallelism expressed by different algorithms 
which give different parallelism for the problem. New 
languages map the algorithms to computing models by ex- 
pressing all the possible parallelism of an algorithm and 
defining the parallel tasks. New machines exploit instruc- 
tion level parallelism. However, if there is no parallelism, 
no speedup can be expected. The dataflow graph parti- 
tioning for the vector machines is horizontal to generate 
the vectors and for the multiprocessors is vertical to gen- 
erate one or more tasks, the basic unit for scheduling. 
Synchronization of control and data flow during execution 
assure the execution order. 

Dataflow computing [ 11 provides multidimensional 
multiple pipelining instruction parallelism and hardware 
parallelism. Scheduling is based on availability of data. 
Processes are instruction size. The problems in multipro- 
cessing due to the physical structure and operation are 
eliminated by parallelism and simple dataflow principle. 
The dataflow approach has the potential to exploit large 
scale concurrency efficiently, for maximum utilization of 
VLSI in computer design, compatibility with distributed 
networks, and compatibility with functional high-level 
programming. In dataflow, an instruction is enabled im- 
mediately after the arrival of required operands, and par- 
tial results of the execution are passed directly as data 
tokens. The computations are free of side effects, and in- 
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dependent computations proceed in parallel. In dataflow 
computing, there is no concept of shared data storage. 
Every instruction is allocated by the computing element. 

The dataflow concept can be easily implemented in both 
major computing application areas; numerical and non- 
numerical computations. Basic elements of dataflow com- 
puting are operators, arcs and tokens. An operation is en- 
abled as soon as its operands are available. The output 
token value is determined by the operation and input to- 
ken values. All dataflow graphs shown in this paper are 
drawn according to the following convention. Boxes rep- 
resent oprations; arrows represent arcs; arrows with black 
heads represent the path for data tokens; arrows with white 
heads represent the path for control tokens; black dots 
represent the data tokens; and the white dots represent the 
control tokens. Common evaluation techniques of these 
models include strict and nonstrict evaluations. In strict 
dataflow computing, all the operands of an operation or 
arguments of a function must be presented to enable the 
execution. Figs. l(a) and l(b) show the firing sequence 
of the strict computation, multiply. In nonstrict dataflow 
computing, a selected number of operands of an operation 
or arguments of a function is sufficient to enable the ex- 
ecution. This avoids unnecessary computations, elimi- 
nates nonterminating computations and optimizes the 
computations. Figs. l(c) and l(d) show the firing se- 
quence of the nonstrict computation, HCONS. The 
HCONS operator has two arguments. The result of 
HCONS, the first argument, is generated immediately 
after the arrival of first argument. Figs. l(e) and l ( f )  show 
the dataflow computing for the numerical computation ( A  
* B )  - ( B / C )  + ( C / D )  and the nonnumerical com- 
putation CONS(CAR(x1, x2, * * e ) ,  CDR(x1, x2, 
. . * )). 

In dataflow computing, data structures in the storage 
are represented by a pointer token. This reduces the par- 
allelism of the computation, but provides safe execution. 
In static dataflow, arrays are treated either as a set of sca- 
lars which allow the elements of the array to be handled 
simultaneously by independent dataflow instructions or as 
a sequence of values which spreads the array out in time 
for pipeline execution. Heaps are functional directed 
acyclic graphs. They must be completely produced before 
consumption. The append, select, create and delete actors 
are used to access these structures. The I-structures allow 
a selection of elements before complete production of the 
structure. The position of an element is defined by a 
tagged token. The presence, absence and wait bits indi- 
cate the state of the element. Read of an unwritten storage 
cell is deferred by the controller until a write arrives. 
Pipelining between consumers and producers gives better 
performance. Streams are sequentially allocated arrays. 

In the basic dataflow computing model, the number of 
tokens per arc is restricted to one during the entire com- 
putation which results in huge acyclic graphs. This makes 
the computation strictly iterative. This problem is solved 
by many other advanced computing models. These models 
support the building of highly parallel and asynchronous 
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Fig. 1. Dataflow computing. 

computing machines, but differ in their approach as to how 
the computing should proceed. Section I1 of this paper 
discusses the acknowledgment static, strictly static, re- 
cursive dynamic, tagged token dynamic, eduction, lazy- 
eager, pseudo-result, and Not(operation) dataflow com- 
puting models. The discussion is based on the represen- 
tation of conditional computations, the root of iterative 
and recursive computations. Section I11 overviews the 
logic programming and functional languages used to rep- 
resent dataflow computations and the process of high-level 
languages to graph transformation using DCBL transfor- 
mation. This transformation is applied to Lisp to obtain 
dataflow graphs. Section IV discusses the characteristics 
of representative dataflow computing machines for nu- 
merical and nonnumerical computations and some general 
problems. Section V gives the performance evaluation 
measurements made using EM-3. 

11. DATAFLOW COMPUTING MODELS 

A .  Static Computing 

Static dataflow computing [ I ]  to [5] was proposed by 
Dennis for ultrahigh speed computing machines. The 
VIM, Texas DDP, LAU, Hughes, and NEDIPS systems 
are based on the static computing model. This computing 
model consists of operators, data and control arcs, and 
data and control tokens. In static computing, concurrent 
reentrance is inhibited. Several tokens per link are al- 
lowed but there is a restriction of one token per time. An 
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actor fires when there are no tokens on any of the actor's 
output arcs. 

Two models are used to represent static dataflow com- 
puting. The strictly static model used in Texas DDP 161, 
[7] prohibits initiation of a new iteration before the pre- 
vious one is concluded. The branch node does not provide 
new tokens until the previous iteration is completed. This 
model provides safe execution of the computation but 
limits the parallelism. In the acknowledgment static model 
[ 3 ]  consumers send acknowledgment signals to produc- 
ers, indicating the possibility of accepting a new set of 
tokens. This enables pipeline production of tokens and 
exploits the parallelism by allowing initiation of new it- 
erations before the previous one has been concluded. Safe 
execution of reentrant graphs is provided with added com- 
plexity. 

A token consists of a value and one component tag rep- 
resenting the target actor identity. No code copying or 
recursion is allowed. Only iteration is supported. The 
switch-t, switch-f, and merge operations are introduced 
to support conditional computations in both models. A 
true token at the input of switch-t copies the other token 
in the input to the output. A false token at the input of 
switch-t does not dispatch the other input token to the out- 
put. Similarly, the switch-f operator dispatches the input 
token to the output if and only if the boolean input token 
is false. Three input merge operators are executed when 
the boolean input and appropriate data token is available. 
Fig. 2 shows the implementation of the conditional com- 
putation, IF C ( x )  THEN A1 ( x )  ELSE B1 ( x ) ,  and three 
instances of the firing sequence. 

B. Recursive Dynamic Computing 

In dynamic dataflow computing, several instances of a 
node can be fired at a time and these nodes can be created 
at run time. Concurrent reentrance is permitted using code 
copying. In code copying, a new instance of a subgraph 
is created. The tokens must be directed to the correspond- 
ing instance. This enables recursive computations in the 
dataflow computing environment. Davis [ 161, [ 171 and 
Dennis et al. [4] proposed the recursive dynamic com- 
puting model based on FIFO queues and recursive com- 
putations resulting in acyclic directed graphs. In each in- 
vocation, a maximum of one token is placed on a link. 
An apply actor causes a new copy of the program graph. 
There are no merge actors because in any instance of the 
graph only one of the data inputs of the merge is used. A 
token consists of a value and a two component tag, one 
representing the graph instance, the other representing the 
actor within the graph. A token is represented by, < U ,  
< U ,  s > d >, a data value U ,  an activation instance U ,  
an actor within the function s, and the operand of the tar- 
get actor d .  The operand of the target actor is not neces- 
sary for single operand operations. The DDM 1 machine 
is based on this recursive dynamic computing. Fig. 3 
shows the firing sequence for recursive dynamic dataflow 
computing. 

Pig. Z(b) t 
Fig. 2.  Static computing 
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Fig. 3. Recursive dynamic computing. 

C.  Tagged Token Dynamic Computing 
The tagged token dynamic computing model, proposed 

separately by Arvind [8] to [ l l ]  and Gurd-Watson 1121- 
[lS],  is more efficient in exploiting the parallelism to a 
large degree. A tag assigned to each token distinguishes 
its identity. Identically tagged tokens enable the execu- 
tion of an operation. Tagging allows many data values per 
link at one time. Several instances of a node are fired at 
one time. Each node can be created at run time. Recursion 
and iteration are represented directly. Successive cycles 
of an iteration are allowed to overlap by unfolding loops. 

A token consists of a value and tag representing the 
target actor identity. A token is represented by, < U ,  < U ,  
c,  s, i > d > , a data value U ,  an activation instance U ,  a 
code block (loop body) c ,  an actor within the function s, 
an index representing the cycle of an iteration (data struc- 
tures) i ,  and function activation d.  No merge actor is used. 
Identity actors, such as D-operator for loop entry which 
establishes a new context for iteration and sets the index 
of result tokens to one greater than the index of the input 
token and D-reset operator for loop exit which restores 
the tag of result token to that of the context surrounding 
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the tag, are used. Special mechanisms, such as loop throt- 
tling are used to limit, the parallelism exploited by tagged 
tokens. 

The MIT TTDA, Manchester Dataflow machine and all 
tagged token dynamic dataflow machines are based on this 
model. Id, LAPSE, MAD, SASL, SISAL, and many other 
dataflow languages support these machines. The switch 
operation used to implement conditional computations has 
two input arcs, one for boolean tokens and the other for 
data tokens to be switched. This operator also has two 
output arcs. The incoming boolean token determines the 
output arc along which the incoming data token is sent. 
A true token copies the other token in the input to the T 
output while a false token copies to the F output. No 
merge operators are used. The BRR operation used by 
Gurd’s group is similar to this switch operation. Fig. 4 
shows the firing sequence for tagged token dynamic da- 
taflow computing. 

D. Eduction Computing 
The Eduction model, proposed by Ashcroft and Jagan- 

nathan [18], is a hybrid computing model of dataflow and 
demand flow computing. Operator nets represent the 
eduction computations graphically. The demand for a re- 
sult triggers its computation which in turn triggers eval- 
uation of its arguments. The demand propagation contin- 
ues until constants are encountered, then a value is 
returned to the demanding node and execution proceeds 
in the opposite direction. This minimizes the computation 
to compute only necessary computations for a particular 
problem. The arguments for branches of conditional com- 
putations are not evaluated in parallel. Only necessary ar- 
guments are evaluated. The modal operators, where, first, 
next, followed by, as soon as, merge, whenever, upon 
and is current, are used to express recursion and iteration 
in a purely functional way. The Eazy flow engine is pro- 
posed to execute operator nets described in LUCID lan- 
guage. Fig. 5 shows the firing sequence of eduction com- 
puting. The wvr node is similar to the switch-t operation. 
The switch operation is occasionally used. Operators such 
as wvr and merge need extra memory to remember the 
last token arrived in dynamic dataflow computing. 

E, Dataflow-Control flow Computing 
The Dataflow-Control flow computing model proposed 

by Treleavan et al. [20] use two basic mechanisms. One 
instruction causes the execution of others using the con- 
trol mechanism. Instructions receive and dispatch data 
using the data mechanism. Instruction execution is caused 
by the availability of specific set of data and control to- 
kens. Data tokens carry partial result values while control 
tokens carry null values. Instructions are activated by the 
set of control tokens. Conditional Computations are sup- 
ported by the many input two output switch operation. 

F. Eager-Lazy Computing 
The eager-lazy dataflow computing model was pro- 

posed by Amamiya et al. [21] to 1261 for artificial intel- 

ligence 

!’. Switch 

Ij 
Switch 

I Fig. 4(b) 

Fig. 4 .  Dynamic computing. 

lb ig .  S(b) 

Fig. 5 .  Eduction computing. 

applications. In eager evaluation, all possible .. - 
computations are executed in parallel without optimizing. 
Conditional computations are executed parallel to the 
branches. CAR and CDR parts are evaluated in parallel 
to the CONS. CONS (x, y )  is implemented using the get- 
cell, writecar and writecdr operations shown in Fig. 6. 
This is the lenient cons mechanism. In lazy evaluation, 
selected computations are executed to optimize the com- 
putation. The selected branch is executed after the exe- 
cution of the conditional computation. In the lazy cons 
mechanism, the car or cdr part is evaluated only when its 
value is demanded. In this model, eager, lazy, nonstrict, 
and demand driven computing mechanisms are selectively 
and efficiently implemented to obtain the maximum effi- 
ciency. The model is implemented in DFM using VALID 
language. 

G. Pseudoresult Computing 
Yamaguchi et al. [28]-[30] proposed the pseudoresult 

dataflow computing model shown in Fig. 7, particularly 
for A1 applications. In Fig. 7 black boxes represent pseu- 
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Fig. 6. Eager-lazy computing. 

doresults, black dots represent semiresults and white 
boxes represent actual results. Pseudoresults are gener- 
ated immediately after the arrival of all arguments, as a 
result of function execution. See Fig. 7(a). This pseudo- 
result enables the successive computations relaxing the 
firing conditions. The operations in the function are exe- 
cuted concurrently with the evaluation of its successor. 
The identifiers of pseudoresults are realized by addresses 
in a result store and are eventually filled by actual results. 
The semiresult is the pseudoresult used in nonnumerical 
computations, and the partial-result is the pseudoresult 
used in numerical computations. When the input to an op- 
eration or function is actual, semi or pseudo, the output 
is an actual or semiresult. The execution of an arithmetic 
operation is deferred until the inputs become actual. Fig. 
7(b) shows four different instances of CONS execution 
and Fig. 7(c) shows an application example of pseudore- 
sults. This model is implemented in the EM-3 using the 
languages EMLISP and EMIL. 

H. Not(operation) Computing 
In the Not(operation) computing model [3 11-[33], par- 

allel computations are represented by sequential, parallel 
and decision making computation segments. Ordered se- 
quential computation segments ensure the logical correct- 
ness of the computation. Parallel computation segments 
composed of independent computations. The conditional 
computation is represented using two parallel comple- 
mentary computations. The transformation of a traditional 
conditional computation to a Not(operation) based com- 
putation is performed in two steps. First, the traditional 
conditional computation is disintegrated into two comple- 
mentary basic operations which must be executed for 
deadlock-free computation. The positive state is denoted 
by Operation and the negative state is denoted by 
Not(operation). The negative state represents many other 
positive and negative states. n sequential conditional 
computations are represented by n different independent 
parallel operations. Then the semantics of the execution 
are defined. One of the operations executed will give an 
output value if the operation is satisfied. Figs. 8(a) and 
8(b) show the firing sequence of the conditional compu- 
tation. IF (Operation) THEN SI OR IF (Not(operation)) 
THEN S2. The Operation and Not(operation) receive a 
copy of the input token. When the Operation satisfies the 
input data token, the data token is given as the result of 
execution, and the output of the Not(operation) is frozen. 
Otherwise, the Not(operation) gives the data value output 

r pq 
Fig. 7(a) 

I 

t g 

7 ( c )  1 
Fig. 7. Pseudoresult based computing 

Fig. B(a)  

I na 
Fig. 8(b) & ... Sn & ... 1s” 

Fig. B ( d )  Fig. B ( e )  

Fig. 8. Not(operation) computing. 

show two instances of firing sequence of n parallel con- 
ditional computations. 

111. DATAFLOW COMPUTING LANGUAGES 
The language is very important in representing parallel 

algorithms for intelligence computations and mapping 
them efficiently onto the computing environment. Func- 
tional and logic programming languages are two major 
declarative language paradigms to enhance intelligence 
computing productivity. In dataflow computing it is pos- 
sible to use an existing sequential language, functional 

~~ 

language, parallel logic programming or any other high- 
level language. The use of existing languages allows ex- while the Operation output is frozen. Figs. 8(c) and 8(d) 
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isting software to run on the new machine and give a pro- 
grammer high degree of control over the run time behav- 
ior. Conventional programs consisting of sequences of 
statements and control statements alter the data stored in 
memory one at a time. Variables are used to represent 
storage cells and a statement is necessary to alter data for 
each variable. 

The use of sequential languages to represent parallel 
algorithms and map for a parallel execution environment 
complicate the execution process. Algorithms that form 
dataflow graphs from conventional languages are com- 
plex. The concurrency detected by a compiler is also lim- 
ited. The use of a language which reflects the parallel ma- 
chine features exploits the machine parallelism but 
increases the programming complexity. Dataflow pro- 
gramming requires no knowledge of machine structure and 
there is no need of explicit expression of parallelism. The 
compiler detects the parallelism. Users should not con- 
sider the explicit control of memory allocations in using 
machines, but should deal only with data values. Low- 
level languages for dataflow computing machines should 
describe dataflow computing efficiently. 

A. Logic Programming 
Robinson’s resolution principle [34] applies only one 

powerful rule of inference to mechanical theorem prov- 
ing. This enables computer making deductions from set 
of logical formulas. Drawing inferences at a very high 
speed is the future objective of expert systems. Logic pro- 
gramming, based on symbolic logic, is suitable for 
knowledge processing systems dealing with large data- 
bases [35]. Implicit search strategy and parallelism sup- 
port symbolic processing. Logic programming describes 
the facts and their relationships in a problem and controls 
the execution nondeterministically. Questioning gives the 
answer using declared facts and defined rules. A question 
is answerable if it is the head of any other clause and each 
of its goals is true. When answering a question, logic pro- 
gramming looks for matching facts in the database. Two 
facts match if their predicates and corresponding argu- 
ments are the same. The process of matching, unification, 
is the execution mode. Clauses in logic programming are 
transformed into dataflow graphs. 

1) Prolog: Colmeraur’s Prolog design [36] based on 
language theory and mathematical logic with practical 
constraints. Prolog, a sequential logic programming lan- 
guage, draws inferences efficiently. Relationships are rep- 
resented as predicates, and objects are represented as ar- 
guments. Facts declare the relationships between objects. 
Assertion, a fact, has no body. Conditional assertion, a 
rule, has a head and body. Rules are used to describe or 
define the relationships. The execution mode is unifica- 
tion with backtracking. Prolog languages start the exe- 
cution of a goal only after the completion of the previous 
goal. 

2) Relational Language: Clark’s Relational language 
[38] is focus on parallel execution of logic programs. Re- 
lational language features include AND-parallel execu- 

tion of conjunctive goals, process communications by 
shared variables and OR-parallel reduction. The commit 
operator is introduced to separate the guard and body. 
AND-parallel processes are synchronized by defining the 
instances of the variables as producers or consumers. 

3) PARLOG: Clark’s PARLOG [39] augments the ex- 
pressive power of Relational language. In PARLOG, the 
resolution tree has one chain at AND levels, and OR lev- 
els are partially or fully generated. Communicating pro- 
cesses combine the partial solutions. Restriction of the 
access mode is specified by mode declaration. The modes 
of predicate variables are predefined as input or output. 

4) Concurrent Prolog: Many features of Relational 
Language are implemented in Shapiro’s Concurrent 
Prolog [40]. In Concurrent Prolog the search strategy is 
multiple, depth first. The resolution tree consists of one 
chain from top to bottom. Guards can bind variables. Read 
only variables in a process are introduced to support pro- 
cess synchronization. The clause activation is suspended 
until the variable is assigned a value. 

B. Functional Programming Languages 

In functional programming languages, programs are 
mathematical functions based on functional algebra. 
Function application is the major operation. The object is 
mapped onto another object. There is no concept of stor- 
age, assignment, goto, or side effects. Programs are free 
building blocks for larger programs. Functional lan- 
guages do not reflect von Neumann properties or the ma- 
chine structure and are zero or single assignment lan- 
guages. They provide specially controlled reassignment 
constructs for loop. Functional languages such as Pure 
Lisp and FP [41], [42] can be used effectively to execute 
computations in dataflow computing machines. In FP, 
programs are used to construct new programs using pro- 
gram forming operations. It increases the expressiveness 
of algorithms, exploits the massive parallelism in scien- 
tific computations, permits abstract data structures, 
streams, and irregular data structures, and allows power- 
ful programming constructs. However, some problems, 
including storage control, need efficient solution. 

1) VAL: VAL, the high level language designed by 
Dennis’s group [ 11-[5], is value oriented, as opposed to 
traditional variable orientation. In a value oriented sys- 
tem, new values are defined and used but no values can 
ever be modified. Values may be bound to identifiers but 
identifiers are prevented from being used as variables. The 
design principles of VAL provide implicit concurrency 
and synchronization by using completely functional lan- 
guage features. Expression based features inhibit all forms 
of side effects. Once the values of all inputs are known, 
execution cannot influence the results of any other oper- 
ation ready to be executed. Automatic detection of par- 
allel computations by compilers, vectorization, has been 
used to exploit concurrency. Side effect features, memory 
update and aliasing are banned. VAL helps simplify crit- 
ical programming chores such as error handling, debug- 
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ging, and speed analysis. VIMVAL, an extension of 
VAL, treat functions as first class objects. They are passed 
as arguments and returned as results of functions. Stream 
types, free variables, recursion, and mutual recursion fea- 
tures are added. 

2) Id: Id [8]-[ll] was proposed by Arvind and Gos- 
telow. Id, or Irvine Dataflow, is a block structured, 
expression oriented, side effect free, single assignment 
language. A program in Id is a list of expressions. The 
four basic expressions are blocks, conditionals, loops and 
procedure applications. Id variables are not typed. SE- 
LECT and APPEND create new and logically distinct 
structures, Executions are dynamic compared to the static 
nature of Dennis’s model. Id supports streams, non-de- 
terministic programming and higher order functions. 

3) LUCID: LUCID [19], proposed by Ashcroft and 
Wadge, is the programming language of operator nets. 
The transformation from one to another is simple since 
the programs represent mathematical semantics of opera- 
tor nets. In LUCID, programming proofs are carried out 
and incorporates iterations by regarding all values as his- 
tories [ 171. Everything, including constants, is an infinite 
history. Assignment statements are equations between 
histories. A program in LUCID is an unordered set of 
equations. Conventional LUCID is implemented employ- 
ing demand driven computing for infinite objects. 

4) Manchester Languages: Languages used in the 
Manchester machine [ 121-[ 151 are conventional lan- 
guages, LAPSE, MAD, SASL, and SISAL. SASL, based 
on LUCID, treats functions as first class objects. In par- 
ticular, the function takes one argument, and currying is 
used to obtain the effect of multiple argument functions. 
LAPSE, a single assignment language, has Pascal-like 
syntax. LAPSE stores arrays during iteration or for-all 
loops which have used them. MAD, based on Id, is typed, 
using streams and has operators such as list processing 
operations. MAD stores arrays longer, and garbage col- 
lection is performed using reference counts. SPNLN and 
TASS are low-level dataflow graph languages used for 
these languages. 

SISAL [43], [44], stream and iteration in a single as- 
signment language, is a cooperative research by the Co- 
larado State University, DEC, Lawrence Livermore Lab- 
oratory, and Manchester University. This language is a 
value oriented functional language for sequential, vector, 
multiprocessor, and dataflow computing machines. SISAL 
is implemented on the VAX, CRAY, HEP, and Man- 
chester dataflow machines. SISAL is strongly typed. Re- 
cursion has been added. Error values are simplified. Some 
Id (/MAD) features are added. Tokens are labeled to al- 
low multiple use of arcs. Labels are used for data struc- 
tures, loops, and functions. IF1, the intermediate lan- 
guage for SISAL [36], performs machine independent 
optimizations and machine dependent analysis. 

5) Valid: Valid, value identification language [23] de- 
signed by Amamiya et al.,  is a functional language with 
implicit and explicit parallel constructs. Lenient-cons 
computing is applied in function evaluation to achieve 

parallelism. List computations and higher order functions 
are written using an Algol and Lisp-like syntax. 

6) EMLISP: EMLISP, is a single assignment language 
[27]-[30]. To obtain side effect free, pure functional list 
processing, the features added to conventional Lisp to in- 
crease efficiency in von Neumann computing, such as rel- 
atives of PROG, flow controlling operations, list modi- 
fiers, relatives of array, and side effect operations such as 
RPLACA and RPLACD, are removed. The global and 
free variables and loops are inhibited. Special features 
such as parallel COND, parallel OR, parallel AND, and 
BLOCK are added. EMIL is the low-level language used 
to represent dataflow computing graphs. 

C. DCBL Transformations for  Dataflow Computing 
Languages 

The objectives of DCBL (pronounced decibel) [32] de- 
sign is to define operational semantics for dataflow com- 
puting languages, development of high level languages 
based on abstraction mechanisms that frees the user from 
consideration of machine characteristics and are comfort- 
able for users to express many forms of concurrency, to 
facilitate the natural expression of parallelism of the prob- 
lems for processing on dataflow machines, and to enable 
a compiler to generate optimized code that exploits the 
inherent dataflow parallelism without the application of 
sophisticated analysis techniques. 

1) Specijication of DCBL: DCBL allows parallel al- 
gorithms to be expressed as a collection of expressions. 
The execution of a DCBL program consists of a sequence 
of parallel executions of expressions. An expression ex- 
ecution may generate zero, one or more than two values. 
Tuple expressions, multivalue function expressions, con- 
ditional expressions, and parallel expressions generate 
more than two values. The DCBL syntax specification for 
iterative computations is given below. 

exp :: = function(exp) 
exp 1 exp, exp, * * 

I IF exp THEN exp, IFNOT exp THEN exp 
1 identifiers 
I constants 
I LET idlist = exp IN exp 
1 IF exp THEN exp 
I FOR idlist = exp DO iteration 

iteration :: = ITER exp NOTITER exp 
1 LET idlist = exp IN iteration 
1 IF exp THEN iteration 
I IF exp THEN iteration, IFNOT exp THEN it- 
eration 

idlist ::= id 
I idlist id 

The application of a function to an expression, 
funct (exp),  is used to represent sequential computations. 
The elementary functions are operators. The operations 
performed on expressions can be characterized by math- 
ematical functions. The application of function F to the 
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imports, x ,  y ,  and z ,  produces export F ( x , y , z ) .  The 
expression exp, exp, * * * exp is used to represent parallel 
computations. Identifiers and constants are the most ele- 
mentary expressions. Values can be bound to identifiers, 
which can be bound to simple types (integer and real), 
structured types and function calls. The LET IN expres- 
sion provides local binding to extend the execution envi- 
ronment. 

Decision making computations, conditional expres- 
sions and the FOR DO expressions, sequence the parallel 
computation to ensure logical correctness and avoid ini- 
tiating computations whose results can never be used. 
Conditional expression represents operational semantics 
for conditional, iterative and recursive computations. The 
general IF THEN ELSE expressions and case expressions 
are represented by the IF exp THEN exp. All predicates 
in IF exp THEN are supported by expressions. IF exp 
THEN exp provides the single branch conditional expres- 
sion. IF expl THEN exp2 IFNOT expl THEN exp3 is 
a two branch conditional expression with two parallel 
complementary conditional computations. Combining n 
IF exp THEN exp expressions, gives n parallel compu- 
tations with a live branch and n - 1 dead branches. 

The FOR idlist = exp DO iteration expression imple- 
ments iterative computations that depend on the previous 
iterative computation result. The FOR expression has loop 
initiation and a loop body. Loop initiation is performed 
by the FOR idlist = exp part and the loop body appears 
in DO iteration. The iterative expression is evaluated by 
binding the iterative identifiers, the elements of idlist, to 
the values of exp. The evaluation of the iteration body 
results in a NOTITER expression and an ITER expres- 
sion. Both these expressions are evaluated concurrently in 
each iteration exploiting the hidden parallelism of the it- 
eration expression. If the NOTITER expression satisfies 
the condition, this terminates the iteration and gives the 
computation result. Otherwise, the output is given by 
ITER expression. Here, the ITER expression is satisfied 
and continues iteration. The iteration is terminated when 
the evaluation of the ITER body results in an ordinary 
NOTITER expression. The value of this expression is the 
value of the ITER expression. Parallel expressions for the 
computations of the type For i := 1 to n do C[i] := 
A[i] * B[i], represents iterations that do not depend on 
the previous computation result. 

2) DataJlow Graph Specijication Language: A data- 
flow graph representing dataflow computations can be de- 
fined by N = [ T,  0, L ] where T,  0, and L represent the 
set of tokens, the set of operations and the set of links. 
For an element Oi in 0, the set Im( Oi ) represents the 
import ports of Oi and Ex ( Oi ) represents the export ports 
of Oi. Firing of an operation maps imports to exports. The 
semantics of firing define the minimum set of import ports, 
varying from one to the total number of imports, that must 
receive imports to enable an operation/function. The out- 
put semantics may vary depending on the execution of an 

operation. Firing an operator dispatches exports to zero 
or more export links. Expressions and the compiler help 
identify concurrency in algorithms and their program and 
map that concurrency onto graphs. The graph, which con- 
nects subgraphs composed of operators, is an explicit rep- 
resentation of the concurrency available in evaluating 
expressions. 

An element of a dataflow computation consists of im- 
port ports, imports, export ports, exports, import links, 
export links, and operators. Specifications of a dataflow 
graph include imports, exports, data links, and operators. 
Operators are defined recursively using local imports and 
exports. Imports to the operator embark at import ports. 
Exports of the operators disembark at export ports. The 
number of imports or exports in a link is unlimited. This 
gives the dynamic computing features. The restriction of 
values to one gives the static computing feature. The op- 
erators communicate values through their import and ex- 
port ports. The graph has an import port for each free 
variable of the expression and an export port for each 
value returned by the expression. 

The exports produced are exported via export ports to 
defined destinations to enable successive computations. 
The destination of an export value is specified by the im- 
port port number of the destination operator. The export 
port of an operator is connected by a link to the import 
port of another operator. The export value of one operator 
is the import value to another operator. 

The following notations are used to specify the dataflow 
graphs. T (exp) is used to represent the operators of the 
translated expression exp. 1M.T (exp) represent the set 
of imports to T(exp). EX.T(exp) represents the exports 
at the export ports of the T(exp). The imports and exports 
have defined import ports and export ports. Links are rep- 
resented by EX.T(exp1) -+ IM.T(exp2) which means 
that the exports of T(exp1) are linked as the imports to 
the defined import ports of the T(exp2). The import ports 
of all parallel subgraphs are assigned the set of import 
values. The graph export ports are formed by concate- 
nating the export ports of the component subgraphs. This 
graph language provides facilities to design demand driven 
computing languages and to specify parallel and distrib- 
uted systems. 

The complexity of a dataflow graph increases with the 
number of operators and arcs. This increases execution 
and communication time and creates many problems when 
executing in a limited resource. The fundamental princi- 
ple of managing the complexity is to reduce the size of 
the graph while preserving the original properties of the 
graph. In graph reduction, the number of operators, arcs 
and tokens generated are reduced without changing the 
final result of the computation. 

3) DCBL Transformation: The transfer function T 
maps expressions to dataflow graphs and the functionality 
of the operator F maps imports onto exports. The opera- 
tional semantics are defined and derived by the applica- 
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tion of F(T(exp)). The expression transformation to 
graphs gives the informal operational semantics of the da- 
taflow graphs. The transformation of funct(exp), 
T(funct(exp)), is sequentially connected dataflow 
subgraphs. The transformation is made by connecting the 
export ports of T(exp) to the import ports of T(funct). The 
transformation of [T(expl, exp2, . expn)] consists of 
n subgraphs, [T(expl)], [T(exp2)], * . . and [T(expn)], 
that can be executed in parallel. Two subgraphs are con- 
nected sequentially in the implementation of the simplest 
conditional expression, IF expl THEN exp2. Predicate 
expl controls the evaluation of exp2. The import data 
value of T(exp1) is the export of T(exp1) if this data sat- 
isfies the condition expressed by expl; if not, the data 
value is simply absorbed. This expression provides the 
facility to evaluate n parallel conditional expressions. The 
transformation of parallel complementary conditional 
expressions, IF expl THEN exp2 IFNOT expl THEN 
exp3 is illustrated in Fig. 9. The transformation of the 
identifier, [T(id)], gives a graph with no operators. The 
transformation of a constant expression gives the const 
operator with import export links. A trigger-value import 
produces the value, const, as the export. 

DCBL binds identifiers locally. In evaluating FOR 
idlist = exp DO iteration, the elements of idlist are 
bound to the values of exp, and iteration is terminated 
when the iteration results in an ordinary expression. 
ITER(exp) supports iteration if the imports satisfy the 
expression exp. NOTITERexp gives the result of the 
computation. The iteration body, LET idlist = exp IN 
iteration, is implemented in the same way as the expres- 
sion LET idlist = expl IN exp2 is implemented. The 
dataflow graph implementation of the conditional itera- 
tion body, IF exp THEN iteration, is similar to that of 
the conditional expression. Both subgraphs, IF exp and 
IFNOTexp, provide a complete set of exports. [T(exp)] 
and [T(notexp)] are placed on the import paths of the 
iteration body subgraphs, [Tl(iterationl)] and 
[Tl(iteration2)]. Exports of [T(exp)] or [T(notexp)] en- 
able the evaluation of a selected iteration body. 

4) Functionality: The functionality of dataflow graph 
represents the operational semantics of expressions and 
the formal simulation of dataflow graph execution. The 
graph is mapped onto its semantic characteristics using 
the functionality of its operators. The operational seman- 
tics of a dataflow operator are given by its functionality 
which maps its imports onto exports. The functionality of 
an operator is the usual arithmetic or boolean function as- 
sociated with it. For example, F + (x, -y) = x + y and 
Fconstant (x) = constant. Arrival of x token triggers the 
constant operator to give the defined export. The func- 
tionality can be extended for an ordered set of dataflow 
imports. The operator, plus, can be applied to the ordered 
sets x.X and y .  Y where x represents the first value of one 
ordered set, X represents the rest of that ordered set, y 
represents the first value of the other ordered set, and Y 

imports: (IM.T(exp1) U (IM.T(NOTexp1) = IM.T(exp1)) U (IM.T(expZ) - 
(EX.T(exp1)) U (IM.T(exp3) - (EX.T(NOT(exp1)) 

exports: (EX.T(exp2)) or ( EX.T(exp3)) 

links:(EX.T(expl)->IM.T(expZ)) U EX.T(NOTexp1)-> IM.T(exp3)) 

roperatorr:] 
m] 

imports:(LM.T(expl) = EX.T(NOTexp1)) 
I 

I exports:( EX.T(exp1)) 

irnports:(IM.T( NOTexpl)) 

exports:(EX.T(NOTexpl) = M T(exp1)) 

irnports:(IM.T(expZ)) 

exports:(EX.T(expZ)) 

irnports:(lM.T(exp3)) 

Fig. 9. DCBL transformation-T(IF expl THEN exp? IFNOT expl THEN 
exp3). 

represents the rest of that ordered set. Hence, 

(x + y ) .  Fplus(X, Y ) .  
The characteristics of operators or functions can be dis- 

tinguished by either imports or exports. According to im- 
ports there are two types, strict and nonstrict, of operators 
or functions. In strict operator or function the availability 
of all imports enables the execution. For strict operators, 
the operator will not execute without its complete set of 
imports. F(X,  Y, * * . )  = e if X or Y * = e = empty 
Nonstrict operators or functions need the availability of 
specified operands or arguments to enable the execution. 
According to exports there are two types of operators; one 
produces exports in the execution with the arrival of im- 
ports, and the other, used in the implementation of con- 
ditional, iterative, and recursive computations, produces 
and seizes or freezes the exports, depending on the arrival 
of imports. In executing conditional operators, the data 
value imported is exported if it satisfies the conditional 
operator; if it does not satisfy the conditional operator, no 
export values are produced. The complementary set of 
conditional operators, Fcond (x)  and Fnotcond (x), can 
be executed concurrently. 

5)  DCBL Transformations in Lisp: The DCBL trans- 
formation process can be used in any language to repre- 

Fplus(x.X, y . Y )  = Fplus(x, y ) .  Fplus(X, Y )  = 
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sent dataflow computations. Flow graph languages can be 
defined, using imports or exports. Import based languages 
can be used to represent demand driven computations. 
Imports and exports show the relationship between data- 
flow and demand flow computations. IL is the interme- 
diate form for transformed Lisp programs. IL- 1 represents 
the dataflow computations based on exports from an op- 
erator. The format of the codes is 

(OPCODE CONSTANT DEST-LIST) 
(CALL FUNCTION-NAME NO-OF-ARG NO-OF- 
RET DEST-LIST) 
(PROC FUNCTION-NAME NO-OF-ARG DEST- 
LIST). 

The opcode represents an operation or a function name. 
Constant type operands of an operation are placed in the 
constant datum field of the operation. Dest-list, corre- 
sponding to the number of output arcs of a node, repre- 
sents the destinations of the result of an operation. A des- 
tination field consists of a label field and an attribute field. 
The label field represents the destination node and the at- 
tribute field represents the node attribute. Proc specifies 
the function name, total number of arguments, and des- 
tination list of each argument. Fig. 10(a) shows the Lisp 
program and Fig. 10(b) shows the IL-1 code for Fibon- 
acci computation, 

F(1) = 1 ;  
F(2) = 1 ;  
F(n) = F(n-1) + F(n-2). 

Fig. 1O(c) shows the IL code based on imports to an 
operator. Instead of destinations of exports being defined, 
the origins of imports are defined. DEST-LIST in IL code 
is replaced by ORG-LIST, which represents the origins of 
the imports, to get the IL format for import based com- 
putations. 

The nonnumerical and numerical operations in IL are 
car, cdr, cons, add, multiply, subtract and divide. The 
dataflow computing support codes are distribution, pro- 
cedure, call, return and constant. The first column of Ta- 
ble I gives the definitions of these operators. The second 
column of Table I gives the definitions of nonstrict oper- 
ators used in IL. The third column of Table I gives the 
definitions of the conditional operations. CONSTANT is 
used to obtain constants, TRUE, FALSE, or any other 
required value. IL codes give the Fig. 10(d) dataflow 
graph of the Fibonacci computation. Parallel EQUAL and 
NOTEQUAL satisfy the conditional computation require- 
ment. The functionality of IL operators for nonnumerical, 
numerical, and conditional operations is shown below. 
Here, N and E imply frozen export and error value export. 

List operations: 
Fhead((x1 x2 . * .)) = x l  
Ftail((x1 x2 * * )) = (x2 x3 * ) Ftail(()) = E 
Fcons(x1 (x2 * . - )) = (xl x2 * 

Ffhead(( )) = E 

) 

= Fib n-I + Fib n-2 

(defun fibonacci (n )  
(cond (( cq n 1) 1) 

(t (plus (fibonncci(diKerence n 1)) 
(Rbonacci(diKerenc+ n 2 ) ) ) ) ) )  
Fln. IO(.) 

(( eq n 2)  1) 

GOOOl (PROCEDURE FIB I (GO002 MONO-0) ) 
GOO02 ('DISTRIBUTE (GO001 MONO-0) (GO004 MONO-0) ) 
GO003 ('EQ (C-1 1 ) (GO012 (RETURN 1 )) ) 
GOOO4 ('EQ (C-1 2 ) (Goo06 MONO-0)) ) 
GOWS ('GT (C-I 2 ) (COO07 MONO-0) (GOO08 MONO-0) ) 
G0006 (*CONSTANT (C-1 1 ) (G0012(RETURN 1 )) ) 
GOW7 ('DIFFERENCE (C-1 1 ) (GOO09 (ARC 1 1 )) ) 
G0008 ('DIFFERENCE (C-1 2 ) (GOO10 (ARC 1 1 )) ) 
GOO09 ('CALL FIB 1 1 (GO011 0 ) ) 
GOOlO ('CALL FIB 1 1 (GO011 1 ) ) 
G W l l  ('PLUS (GOO14 (RETURN 1 )) ) 
GOO12 ('RETURN I ) 
END 
FIK. 1OIb) 

GOOOl (PROCEDURE FIB 1 ) 
GOOOZ ('DISTRIBUTE (GO001 MONO-0) ) 
GOO03 ('EQ (C-1 1 ) (Goo02 2 ) ) 
GOO04 ('EQ (C-1 2 ) (COO02 1 ) ) 
GO005 ('CT (C-1 2 ) (COO02 1 ) ) 
GO006 ('CONSTANT (C- l  1 ) (Goo04 1 ) ) 
GO007 ('DIFFERENCE (C-1 1 ) (COO05 1 ) ) 
GO008 ('DIFFERENCE (C- l  2 ) (GOO05 1 ) ) 
GO009 ('CALL FIB 1 1 (GO007 0 ) ) 
GOOlO (-CALL FIB 1 1 (GO008 1 ) ) 
GOO11 (-PLUS (GOO09 1 ) (GOO10 2 ) ) 
GO012 ('RETURN (CO003 1 ) ( GOO04 2 ) GOO11 3 ) 

1 
-~ 
' Procedure Fib 1 

1Di;tribute , ] 

J 

[Return 

Fig. IO(d) 

Fig. 10. Fibonacci-dataflow computing 

Numerical operations: 
Fplus(x y) = x+y  Fdifference(x y) = x-y  
Fquotient(x y )  = x l y  Fremainder(x y) = rem x ly  
Ftimes(x y) = x * y 

Conditional operations: 
Fnull(()) = () Fnotnull(x1 
Fnull(x1 . . . ) = N Fnotnull(()) = N 

* ) = (xl . . . ) 

Fatom((x)) = (x) Fatom((x1 - ) = (xl . a )  

Fatom((x1- * * )) = N Fnotatom(x) = N 

Fnumberp(1) = 1 Fnotnumberp(1 
Fnumberp(1 * 

Fequal(x x) = x Fnotequal(x x) = N 
Fequal(x y )  = N Fnotequal(x y) = x 

. - )  = 1 . . . 
. ) = N Fnotnumberp(1) = N 
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TABLE 1 
BASIC DEFINITIONS 

lie( of two Input li.1, 

( . P L U S :  Addition of 
,U" inputs 

D ~ R ~ ~ ~ ~ ~ ~  or t w o  in- 
5 . D I F F E R E N C E :  

P"lr 

6 . T I \ I E S  Mul t ip i t -  
ce l lo"  of t w o  inputs 

7 QUOTIEKT: DI-  
. i s o n  of one input 
by o ihpr  

8. R EM A I V DE R .  
Hernainder 01 dmi- 
5iO" of I X O  ,"put3 

9 .  1>1S T R  IB  U T E :  
1>ir,rit,u,cr '"put 

IO.CO\STA\T:  
C o r ~ e n l  d a i s  U h w  
inpui I S  rece ived  

1 I . P R O C E U U R E :  
Dednes procedure 

12 C A L L :  Calls pro. 
c e d u r c  

I S  R E T U R N :  R c -  
, t"l"S value of procr .  , durc  

- 

; G d i t i o n a l - I L  
i .  iToht .h l&- f& 
storn inpu,, 1rec.c 
o t h c r x l m  

2.VOTATOM: 
Frrrrc lor acorn in- 
p u t ,  Input  o therwise  

S.V\'UhtHERP: Intc- 

put. f r r c r r  othcr- 
v i s e  

4 . 3 O T S U M B E R P :  
Frcrre for integer 

x i3c 

S . E Q U A L .  Right in- 

ort,crxio.  

6 . N O T E Q U A L  
Right input it not 
equal. f r e e z e  o thcr -  

gc, for inleger in. 

input. input o l h c r -  

put  if cquBi. rrccrc 

W l P C  

7 V U L L :  xUii ror 
input. rrcrrc 

n . \ o r \ u i s . :  irlpui 
for not null  input. 
rrFCSp 

i n p u t  i r  R . I p a ~ p r  than 

o t h r r x  is. 

9 G R E A T E R .  RiShl 

Idi. f rccrr  other- 
U i./c 

1O.KOTCREATER: 
Right input i f  not 

frrcrc o l h c r u  IJI 

than  

~ _ _ _ _  

rondiiioraal-EM IL 
L A T O M :  RUC for 
acorn input. f a l x  
otherwise 

for incrgcr input. 

$ .EQUAL:  nu* for 
.que1 input.. f S l 3 C  

o l h e r x i o e  

( . N U L L :  True for 
null input. felar 0th- 
r r u i s .  

5 . G R E A T E R T H A X :  

. . 

2 . N U M B t l L P :  Truc 

fal.rc olhcrul r r  

T~~~ ir ,ish, input 
i l  grcaLer than  Irfl. 
fsloc o t h e r x i s t  

6.LESSTHAV: True 
if right input is le13 
t h a n  I&. falrr o l h -  
P I U  i J C  

7.SWIJCH- T: 
T: F ~ ~ ~ . ~  i r n o t  t rue ,  

r u i k h  input o ther -  
U io*  

8.SWITCH-F:  

r x i i c h  m p u t  ocher- 
x i.t 

F:  €recr. ir fais.. 

for integers x greaterthan y 
Fgreater(x y) = y Fnotgreater(x y) = x 
Fgreater(y x) = N Fnotgreater(x y) = N 

Fhcons(x1 (x2 * . )) = x l  
Ftcons((x1, x2 - . . ) xn) = xn 
Fand( F .  ) = F Fand(T,T,T . * T) = T  
For( - * T ) = T Fand(F,F,F * 

nonstrict operators: 

- F) = F  

IV. DATAFLOW COMPUTING MACHINES 
Considerable progress has been made in building data- 

flow machines during last few years to support intelli- 
gence computations [52]-[56]. Dataflow machines con- 
tributed to advance in building parallel systems. Recur- 
sive computations are implemented using tags or code 
copying. Software simulation is the most economic way 
to verify the effectiveness of the dataflow computing con- 
cept and to identify and solve some problems. Real hard- 
ware prototypes help to identify and solve hardware prob- 
lems. Larger programs can be executed at a higher speed 
in large scale prototypes with sufficient resources. 

A .  Static Machines 
I )  VIM: The Dennis group at MIT introduced the da- 

taflow computing concept and laid the foundation for most 
other dataflow projects [ 11-[5]. Research and develop- 
ment projects on dataflow computing started in 1968, and 
a 1 GFLOP VAL interpretive machine, VIM, is being de- 
veloped. The group's contributions include basic and ad- 
vanced dataflow computing models, design of dataflow 
graphs, dataflow computing languages, and computer ar- 
chitecture. Their main objective is to prove the feasibility 
of the practical application of static dataflow computing 
with acknowledgment signals for large scale numerical 

computations. Acknowledgment signals provide safe ex- 
ecution of the computation. In static computing, data to- 
kens are stored in an instruction or a copy of the instruc- 
tion. Instruction has an operation code to holding operand 
values and destination fields. The nodes of a program are 
loaded to memory before the computation begins and, at 
most, one instance of a node is enabled for firing at a 
time. To activate an instruction operand fields must be 
filled and acknowledge signals must arrive. Enabled nodes 
are detected by associating a counter with each node. Re- 
source allocation decisions are made by the programmer 
or compiler. Computations that do not contribute to the 
final result are avoided by demand driven processing. The 
system has been implemented as an interpreter on a Lisp 
machine and eight PE multiprocessor prototype. Bench- 
mark programs such as the weather model, Navier-stoks 
problem, and plasma simulation were executed. A larger 
prototype with 1024 cell blocks, 1024 functional units, 
and 32 array modules has been proposed. 

1)  Global Conjiguration: The VIM machine consists 
of a routing network, cell blocks, functional units and ar- 
ray memories, shown in Fig. 11. Interconnection network 
tolerate the latency. Cell blocks store program graphs, op- 
erations, operands, destination addresses of nodes, and 
recognize the instructions ready for execution. The func- 
tional unit performs operations on data values. Array 
memories store array structures. 

2) Processing Elements: Functions of PE's are per- 
formed by cell blocks and functional units. Simple in- 
structions such as duplicating values and performing tests 
are executed within the cell block. A PE, with instruction 
enabling and execution mechanisms, consists of an update 
unit, an operation unit, a queue, a fetch unit, and an ac- 
tivity store. The activity store holds dataflow instructions. 
The fetch unit picks addresses of an enabled instruction 
from the queue, fetches that instruction with its operands 
from the activity store and delivers it to the operation unit. 
Instruction execution gives result packets which are sent 
on to the update unit. The update unit enters the address 
of the enabled instruction in the FIFO queue. If the target 
instructions of a result packet reside in some other PE, 
the packet is sent off through the network. Program graph 
execution terminates when none of the nodes is enabled. 
Streams are handled by pipelining. There is no scheduler 
to assign nodes to a processor. Faults in the machine re- 
quire restarting the computation from the beginning. 

3) Packet Formats and Instructions: Result packets 
consist of a result value and a reference. Control packets 
contain boolean values and control values. Data packets 
contain integer or complex values. Floating point, fixed 
point, logical packet communication, and shift instruc- 
tions are used in the processor instruction set. 

2) Texas Distributed Data Processor: The DDP was 
designed by Texas Instmments [6], [7]. The project 
started in 1976 and the DDP has been in operation since 
1978. The main objective is to investigate the feasibility 
of static dataflow computing without acknowledgment 
signals for high speed computing systems. The DDP uses 
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I 

Fig. 11. VIM architecture 

a strict compound branch node to prevent the initiation of 
a new iteration before the completion of the previous it- 
eration. The DDP is implemented in TTL. Each dataflow 
computer contains 32K words of MOS memory. ADA is 
used in the four-processor DDP at the computer science 
department of the University of Southwestern Louisiana. 

a)  Global Conjiguration: The DDP shown in Fig. 
12, consists of four identical dataflow computers to exe- 
cute programs and a TI 990/10 minicomputer acting as a 
front-end processor. These computing elements are con- 
nected by a DCLN ring. 

b) Processing Elements: Each . dataflow computer 
consists of an arithmetic unit which processes executable 
instructions, a program memory holding dataflow instruc- 
tions, an update controller which updates instructions with 
tokens and a pending executable instruction queue. Each 
node is associated with a counter. When an instruction 
completes execution, a series of token packets is released 
to the update controller which stores the token operand in 
the instruction and decrements the count by one. If this 
count is zero, the instruction is executable and is placed 
in the instruction queue. Two communication paths are 
used: one for transmitting instruction packets and result 
packets, and the other for maintenance and diagnostic 
purposes. A maintenance controller detects faulty proces- 
sors. Computations can restart at the preceding check- 
point. A maintenance bus provides communication facil- 
ities to monitor the performance of each processor, to load 
and dump contents of the memory, and to diagnose the 
faults. The local memory of the processor has an instruc- 
tion memory and a data memory. Result packets are stored 
in data memory. Recursive computations are not sup- 
ported. 

c) Packet Formats and lnstructions: Instruction 
packets use up to fifteen 35-bit words. An instruction can 
have up to 13 input and 13 output arcs with a total of 14 
input and output arcs. Result packets are two words long 
and contain routing information and data. Monitor call, 
semaphore instructions and pipelining are used in imple- 
menting streams. Floating point instructions, fixed point 
instructions, logical and shift instructions, loop control, 
memory fetch and communication with front end proces- 
sor oriented instructions support Fortran IV programs. 
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Fig. 12. Texas distributed processor. 

FETCH, STORE, and MC instructions handle instruc- 
tions and data. 

3) LAU System: The LAU project started in 1976 at 
the CERT Laboratory, Toulouse, France [45], [46]. The 
LAU machine has been in operation since 1979. The 
group designed the LAU high-level single assignment 
language, programmed a large number of problems, and 
implemented a compiler and detailed simulator. 

a) Global Conjiguration: The machine consists of a 
memory unit, control unit and 32 processing units, shown 
in Fig. 13. The memory unit stores instructions and data. 
The control unit maintains the control memory. Six uni- 
directional buses are used for communication. 

b) Processing Elements: Each processing element is 
built in 16-bit microprogrammed processes using AMD 
2900 bit slice microprocessors. Execution units read data 
from central memory. Enabled instructions are kept in a 
ready instruction queue until results come out of the pro- 
cessor. This helps to reassign instructions to a healthy 
processor. Enabled nodes are detected by associating a 
counter with each node. The memory unit stores instruc- 
tions and the data control unit maintains control memory. 
The von Neumann program counter is replaced by an in- 
struction control memory which handles instructions and 
a data control memory which handles data. 

c) Packet Formats and Instructions: Each node can 
have a maximum of two input arcs and several output arcs. 
The length of instruction and data packets are 64-bits. The 
LAU system does not handle stream data structures. The 
instruction set includes fixed point, logical, shift, control 
instructions such as CASE, LOOP, CALL, RETURN, 
and EXPAND. 

4) NEDIPS: NEDIPS and IPP were the first commer- 
cially available dataflow processors [64]. They are special 
purpose dataflow processors with static architecture, well 
tuned to image processing applications developed by the 
Nippon Electric Co. NEDIPS is a 32-bit machine for sci- 
entific computation and uses high speed logic. The Image 



HERATH er al. : COMPUTING MODELS FOR INTELLIGENCE COMPUTATIONS 1817 

I lEzzA INSTRUCTION QUEUE 

1 - 1  I 

1 / C O i T R O L  U N I T  1 
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Pipelined Processor (IPP) is a single chip processor of 
similar architecture. This processor is a building block for 
highly parallel image processing systems. Special mech- 
anisms are used to implement multiple tokens per arc. 
Special hardware operations are provided for generating, 
splitting and merging streams of tokens. 

B. Dynamic Machines 
I )  MIT Tagged-Token Dataflow Machine: The Irvine 

dataflow project started in 1975 at the University of Cal- 
ifornia at Irvine and is being continued at MIT by Ar- 
vind’s group [8]-[ 113.  The major contributions include 
the tagged token dynamic computing model, I-structures, 
Id language and computer architecture. The main objec- 
tive is to exploit VLSI and provide highly concurrent pro- 
gram organization. A 32-PE machine using Symbolic Lisp 
machines is being constructed. A 256 board 1 BIP ma- 
chine is under construction. 

a) Global Conjiguration: This asynchronous ma- 
chine has 64 processing elements connected via an n-cube 
communication network. The organization minimizes 
communication overhead by matching at the processing 
element holding the storage instruction and bypassing the 
network to the processor itself. 

b) Processing Elements: A PE consists of the input, 
waiting matching, instruction fetch, service, and output 
sections, shown in Fig. 14. The input section accepts in- 
puts from other processing elements, the waiting match- 
ing section forms data tokens into sets for one instruction, 
the instruction fetch section fetches executable instruc- 
tions from local program memory, and the output section 
routes data tokens containing results to the destination 
processing element. Enabled nodes are detected using tags 
carrying the information of the node. Tagged stream ele- 
ments are processed in parallel using multiple instances, 
one for each element. Program memory stores instruction 
codes. The data memory, an I-structure memory, stores 
arrays. Waiting matching storage, an associative mem- 
ory, matches or stores the incoming tokens. The alloca- 
tion of memory and tags is controlled by a manager. Re- 
cursive computations are supported by tagged tokens. 
Processing units asynchronously evaluate the executable 
instruction packets. Faults require computations to be re- 
stored at the previous checkpoint. 

i r ” ” l - ; y ] q  
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Fig. 14. MIT tagged token dataflow PE. 

c) Packet Formats and Instructions: There is a max- 
imum of two input tokens and several output tokens per 
node. Thirty-two enabled nodes can wait for the ALU. 
The instruction set includes floating point, fixed point, 
and logical instructions. The instruction and data packet 
lengths are 33 and 71 bits. 

2) Manchester Dataflow Computer: The Manchester 
project started in 1975 by the Gurd-Watson group [12]- 
[15] at Manchester University. The group’s main objec- 
tive is to investigate the use of tagged token dataflow 
computing concept for very high speed dynamic comput- 
ing systems. They completed the construction of 20 pro- 
cessor, strongly typed, tagged dataflow machine in 1980 
using Schottky bit slice microprocessors. Their contribu- 
tions include tagged token dynamic computing model, 
several high level dataflow computing languages and the 
dataflow machine. The reported performance of the ma- 
chine is approximately l .6  MIPS. 

a)  Global Configuration: The machine consists of a 
switch, token queue, matching unit, instruction unit and 
a processing unit, Fig. 15. A switch provides input and 
output for the system. The token queue is the FIFO buffer 
providing temporary storage for tokens. The matching unit 
matches pairs of tokens, employing hardware hashing. 
The instruction store holds dataflow programs and PE’s 
execute instructions. 

b) Processing Elements: There are fifteen functional 
units in the processor. One enabled node is assigned to 
each functional unit. The node store supplies enabled 
nodes to the processing unit. Enabled nodes are assigned 
to the functional units using any hardware distributor. 
Therefore, there are no multiple assignments to a func- 
tional unit. The matching unit can hold 16K units and em- 
ploy dynamic hashing. The PU consists of distribution 
and arbitration systems and a group of microprogrammed 
microprocessors. Streams are processed in parallel using 
multiple instances, one for each element. Recursion com- 
putations are supported using tags. 

c) Packet Formats and Instructions: The instruction 
set supports floating point, fixed point, data branch, token 
label, flow control, and token relabeling instructions. A 
maximum of two input arcs and two output arcs is allo- 
cated to an operation. The lengths of instruction and data 
packets are 167 and 96 bits. 
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Fig. 15. Manchester machine. 

3) DDMl: The Data Driven Machine project [ 161, [ 171 
started in 1975 by the Davis group at Burroughs Interac- 
tive Research Center. Construction was completed in 
1976, and the machine is now at the Utah University. This 
dynamic machine employs FIFO queues instead of tagged 
tokens to distinguish computations. Program execution 
and machine organization are based on recursion. The 
DDMl is in operation and has been used to study basic 
issues in dataflow. The DEC20/40 is used for software 
support. The graphs are generated from a high-level func- 
tional language GPL. Parenthesized strings in dataflow 
programs provide localized dynamic computing. 

a) Global Conjiguration: The machine is composed 
of an octary tree hierarchy of computing elements. This 
hierarchy exploits VLSI, utilizing the locality of refer- 
ence to reduce the communication and control problems. 

b) Processing Elements: A PE consists of an atomic 
storage unit, an atomic processor, an agenda queue, an 
input queue, an output queue, and a switch, Fig. 16. The 
atomic storage unit, a 4K-4bit character store, is the pro- 
gram memory. The atomic processor is the execution unit. 
The agenda queue is the message store for the local atomic 
storage unit. The input queue is the buffer to the messages 
from the superior element. The output queue is the buffer 
to the messages to the superior element. The switch con- 
nects to eight computer elements. The tree structure in- 
hibits immediate rerouting of the results before the fault. 

c) Packet Formats and Instructions: Data tokens 
provide all communications. Each instruction is repre- 
sented as a variable length instruction packet. Each in- 
struction has an enabling counter for input arcs. An in- 
struction can have any number of input and output arcs. 
Streams are handled by pipelining the tokens. The atomic 
processor processes integer-oriented, logical, indexed 
read and write, and relational operator-oriented instruc- 
tions. 

4) SIGMA-1: The SIGMA-] project [48]-[51] was 
started in 1982 by Yuba’s group at the Electrotechnical 
Laboratory (ETL). Their main objective is to develop a 
large scale tagged token dynamic dataflow machine with 
100 MFLOPS performance for scientific and technologi- 
cal computations. SIGMA-1 uses a C-like high-level da- 
taflow computing language, DFC (Dataflow C), and SAS 
intermediate language to describe the dataflow graphs. A 

preliminary version of the PE and SE using advanced 
Schottky TTL logic and MOS memories has been in op- 
eration, with 1.3 MIPS, since November 1984. The final 
version of a single group uses gate-array LSI chips. The 
full hardware configuration with the total predicted per- 
formance of 100 MFLOPS is in operation now. 

a)  Global Conjiguration: The SIGMA- 1, shown in 
Fig. 17(a), has 128 PE’s and 128 structure elements (SE’s) 
which are divided into 32 groups connected by a two level 
hierarchical network. This hierarchy corresponds to par- 
allel execution of iterations and procedure calls which ap- 
pear frequently in numerical computations. A single group 
consists of four PE’s and four SE’s connected by a 10 X 
10 crossbar switch. The remaining two ports of the switch 
are used for the interfaces to the global network and the 
maintenance architecture. The global network is a two 
stage omega network. 

b) Processing Elements: A PE, shown in Fig. 17(b), 
consists of several functional units, each of which works 
synchronously and constitutes a two stage pipeline. A 
chained hashing hardware with 64K cells is used as the 
matching memory unit. Each PE consists of about 81K 
logic gates, using nine types of 28 gate-array LSI’s. An 
SE controls array structures allowing single write and 
multiple read operations. It is implemented by memory of 
25613 cells where each cell is attached with a waiting 
queue for asynchronous access control. 

c) Packet Formats and Instructions: The data trans- 
fer between PE’s and SE’s is in fixed length packet form. 
A packet consists of the PE or SE number (8 bits), the 
cancel bit, the destination identifier (28 bits), the tagged 
data (40 bits), and miscellaneous information (12 bits). 
The length of the instruction is 40 bits in a primitive for- 
mat. The first 20 bits indicate the operation to be per- 
formed, and the next 20 bits indicate the destination ad- 
dress of the result data. It is possible to allocate a 
maximum of three different destinations to an instruction. 

5) EM-3: The EM-3 project was started by Yuba’s 
group at ETL [27]-[33] in 1982. The objectives of the 
project include evaluating the effectiveness of pseudore- 
sult dataflow computing for symbolic manipulations, im- 
plementing new parallel architectures, and evaluating the 
performance of a hardware simulator by executing appli- 
cation programs. The eight PE prototype started operation 
in 1984, and the 16 PE organization has been in operation 
since 1985. It is used to implement new parallel control 
mechanisms. The maximum performance of the hardware 
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is about I O  MIPS. An advanced version of the EM-3 
which will be a more practical dataflow computer proto- 
type is being developed. 

a) Global Conjiguration: Sixteen identical PE's are 
connected via a packet communication network. There is 
no locality in the network. The router network is adopted 
for communication and a special gate-array LSI chip has 
been developed for this purpose. The LSI chip is a 4-bit 
slice 4 x 4 router and the transfer rate of a packet through 
the network is 150 nanoseconds. 

b) Processing Elements: A PE is constructed using 
MC68000 microprocessor with special hardware, shown 
in Fig. 18. Almost all the functions, including the func- 
tion evaluation mechanism, are performed sequentially 
within the PE. The MC68000, the packet memory control 
unit used as the network interface, and the I/O interface 
to the host computer are connected by a common bus. 
Each PE comprises three boards excluding the interface 
to the host computer PDP- 1 1/44 and the network boards. 
Packet memory is accessed from the microprocessor, and 
each packet is represented as a pointer to packet memory. 
Hence, there is no overhead in moving packets in a PE. 

c) Packet Formats and Instructions: The 96-bit re- 
sult packet carries output data of an operation. A result 
packet consists of the PE number (8 bits), the type-of- 
packet field (4 bits), the packet length (4 bits), the desti- 
nation-identifier (48 bits) and tagged data (32 bits). The 
packet is divided into six 16-bit segments in the network. 
The length of an instruction is 48 bits, comprising the 32- 
bit destination field and the 16-bit operation field. The 
immediate data (32 bits) can be contained, and the num- 
ber of destination fields within an instruction is not fixed. 

6) EDDY: Amamiya et al. [22] at Nippon Telegraph 
and Telephone Corporation (NTT) started research and 
development on dataflow machines in 1980. A dataflow 
processor array system for scientific and technological 

ILL MATCHING SEARCHING 

Fig. 18. EM-3 PE. 

computations, EDDY, was set up as a prototype in 1983. 
High speed was achieved by adapting the operational 
characteristics of scientific and technological computa- 
tions to the machine architecture at a hardware level. Ap- 
plication programs were written in VALID. The machine 
exploits parallelism inherent in the application programs, 
and its performance was not sensitive to inter-PE com- 
munication delay or to load imbalance. 

a )  Global Conjiguration: Sixteen PE's are con- 
nected in a 4 X 4 cellular array structure. Each PE con- 
nects directly to eight neighbouring PE's. There are two 
broadcast control units for loading programs and data to 
each PE, which are located at the interfaces between the 
host computer, PDP-11/60, and a set of PE's. 

b) Processing Elements: Each PE is constructed 
using two 28000 microprocessors. One controls the com- 
munication and the other controls the dataflow and exe- 
cution of instructions. The tagged token concept is ap- 
plied for function invocation and iteration handling. Each 
array element in a program is given a unique identifier, 
and all elements are processed in parallel. Each PE works 
logically as a circular pipeline, but practically, each func- 
tional unit within a PE operates sequentially. 

c) Packet Formats and Instructions: A data packet 
consists of the identifier (color), the destination field and 
the value field. An identifier comprises the array element 
name, the instantiation name and the loop count. An in- 
stantiation name corresponds to a procedure instance name 
and is statically determined at compiling time by caller- 
callee analysis. The array elements are also statically al- 
located to the PE's according to a specific mapping strat- 
egy. The instruction contains almost the same information 
as the data packet except for an operation code. 

7) DFM: Amamiya et al. [21]-[26] at NTT started the 
DFM project in 1982. Their main objective is to develop 
a dataflow machine for symbolic manipulations [I91 to 
[25] using lenient and lazy cons mechanisms. In 1985, the 
construction of the DFM-I1 was started using CMOS gate- 
array technology. Parallel processing of the DFM is re- 
alized by parallel evaluation of function arguments, par- 
tial execution of a function body and pipeline processing 
of a delayed evaluation scheme. The two PE version of 
the DFM has been in operation since the beginning of 
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1986. The basic cycle of a PE is 180 nanoseconds and the 
maximum speed is about 1.4 MIPS per PE. 

a) Global Conjiguration: Several clusters were con- 
nected via a network, shown in Fig. 19. A cluster consists 
of eight PE’s and eight structure memories connected by 
multiple buses. Structure memories are separate from PE’s 
for efficient list processing. Each cluster is supervised by 
a cluster control unit. The cluster control unit controls the 
load balancing among PE’s within the cluster and com- 
municates with other clusters via the network or the host 
computer. The two level network is based on clustering. 
The load distribution is within a cluster, and function dis- 
tribution is among clusters. A blocked content addressa- 
ble memory scheme is applied to reduce the amount of 
hardware. 

b) Processing Elements: Each PE is composed of an 
instruction memory, an operand memory and an execu- 
tion unit. The matching unit contains content addressable 
memory for each function activation. These units work as 
a circular pipeline. A hardware queue is placed at the en- 
trance of the instruction memory to ease packet traffic in 
the circular pipeline. Each structure memory is con- 
structed by multiple memory banks equipped with the list 
operation unit. Each cell of the structure memory is com- 
posed of the cell type field (one bit), the reference count 
field (9 bits), the CAR field, and the CDR field (23 bits 
each). 

c) Packet Formats and Instructions: The size of a 
result packet is 56 bits and its contents are the destination- 
identifier with the function name (24 bits), and data (32 
bits). There are instructions to the cluster control unit and 
to the structure memory as well as to the execution unit. 
An instruction to the execution unit consists of the oper- 
ation field (8 bits), two operand-fields (32 bits each), and 
the destination-identifier. An instruction to the structure 
memory is 90 bits and is associated with the 3-bit PE 
number. 

8) PIM-D: Itoh et al. [58] at ICOT began the research 
and development of a dataflow PROLOG machine in the 
middle of 1982. The objective of ICOT is to develop all 
computer related technology from the viewpoint of pred- 
icate logic. Dataflow architecture, logic programming and 
natural language understanding are three research direc- 
tions identified for this paradigm. Three different types of 
architecture, the PIM-D, a parallel reduction machine and 
a parallel inference machine with an efficient task distri- 
bution mechanism, were studied to overcome the highly 
parallel processing problems in logic programs. The PIM- 
D employs the breadth-first search. To avoid the deadlock 
problem caused by the number of processes, each process 
is associated with execution priority. The eight PE 
PIM-D is in operation now. LSI implementation is being 
developed. 

a) Global Conjiguration: The machine consists of 16 
PE’s, 15 structure memories (SM’s) and a three level hi- 
erarchical network, implemented by a 113-bit bus, shown 
in Fig. 20. The PE’s and SM’s are divided into four clus- 
ters, each of which consists of four PE’s and four SM’s, 

PE], PEZ, ... PEm - 
ISMI, SMZ, ... SMn 

Fig. 19(a) 

Fig. 19(b) 

Fig. 19. DFM-PE. 

Fig. 20. PIM-D architecture. 

except for one cluster. Each bus is connected by the net- 
work node with a 128 packet buffer. The minimum trans- 
mission time is 450 nanoseconds per packet. 

b) Processing Elements: A PE is composed of a 
packet queue, an instruction control unit, and two atomic 
processing units for execution which are also connected 
via a bus. The instruction control unit serves as the match- 
ing function of dataflow control. Each hardware unit is 
constructed using bit-sliced microprogrammable proces- 
sors and TTL IC’s. 

c) Data Formats: A packet transferred between PE’s 
via a bus consists of the PE/SM number (5 bits), the 
packet type (9 bits), the packet color (16 bits), the desti- 
nation identifier (24 bits) and the operand data (32 bits). 
The length of the instruction is 59 bits. A cell of a SM is 
composed of data (32 X 2 bits), the type flag (2 X 2 bits), 
and the reference count area (10 bits). 

9) TOPSTAR: The TOPSTAR [59] is a macro data- 
flow machine, developed from 1978 to 1982 by Suzuki et 
al. at the University of Tokyo [53] to support the rec- 
ognition of printed Chinese character patterns. The TOP- 
STAR-I, composed of three PM’s and two CM’s, is the 
prototype of the more advanced TOPSTAR-11. The TOP- 
STAR-I1 was easily expandable by plugging in additional 
modules. Both machines were in operation with the sys- 
tem software. Data buffers causes the pipeline effect. 
Using TOPSTAR-I1 as a testbed, some experimental stud- 
ies such as the dataflow Lisp compiler, logic simulation 
and parallel PROLOG implementation, were carried out. 
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This led to the development of the parallel PROLOG ma- 
chine called the PIE. 

a) Global Conjguration: Sixteen processing mod- 
ules (PM) and eight communication and control modules 
(CM) are organized in a bipartite graph. Each PM is con- 
nected to a maximum of four CM’s, while each CM is 
connected to a maximum of eight PM’s. Each PM or CM 
is separated from each other but has indirect paths through 
CM’s or PM’s. A procedure level dataflow graph is dy- 
namically mapped into the PM-CM connection network. 
Each PM interrupts one of the connected CM’s and re- 
quests to allocate a task. Each CM contains allocated pro- 
cedures of an execution program, and if executable tasks 
exist, their instances as well as their argument data are 
sent to the requested PM. 

b) Processing Units: Each PM or CM is constructed 
using a Z-80 microprocessor and a direct memory access 
(DMA) controller. The communication between PM and 
CM is through the DMA system at high speed because the 
data block is transferred when a new instance of a pro- 
cedure is needed at an allocated PM. The CM’s commu- 
nication memory is shared with each PM and contains ex- 
ecution programs and their argument data. 

c) Data Formats: The data packet has a variable 
length and consists of the serial number, the field indi- 
cating the stack depth, the destination addresses and the 
procedure instance. The serial number corresponds to a 
color, and the stack depth is used for recording the history 
of the data passed. The data format supports the imple- 
mentation of the control mechanism of iteration and re- 
cursion. 

C. Other Projects 
In addition to the projects mentioned above, there are 

many other dataflow research projects. These include 
projects at the University of Southern California [47], 
Hughes Aircraft Company, University of Adelaide [65], 
University of New South Wales, Keio University, Japan 
[3 11, [57], Osaka University [62], Gunma University 
[57], Tokyo University [61], and Indian Institute of Tech- 
nology. 

D. Problems in Datajow Computing Machines 
1)  Matching Bottleneck: The dataflow processing ele- 

ment must consist of mechanisms to recognize the data 
tokens to an operation, perform the execution of operation 
and dispatch unit to distribute result data tokens. Hence, 
a dataflow processing element basically consists of a 
matching unit, instruction fetch unit, execution unit and 
distribution unit, shown in Fig. 21. The execution unit 
performs the execution and structure handling. Matching 
performs the synchronization of multiple segments of ex- 
ecution. The matching unit sequentially matches and syn- 
chronizes the operands of double-operand operations for 
execution. No matching is necessary for single-operand 
operations. The larger the number of double-operand op- 
erations, the more matching to be performed in the match- 
ing unit. This narrows the pipeline between the matching 

Fig. 21. Dataflow PE 

unit and execution unit and reduces the computing speed. 
This is the matching bottleneck. 

2) Remaining Packet Garbage: The large number of 
unexecuted packets waiting in the matching unit after 
completing the execution of computation is remaining 
packet garbage, RPG. RPG is generated due to vertical 
branches created by conditional computations and mul- 
tiargument functions. A conditional computation divides 
the dataflow computing into two vertical branches. Exe- 
cution of the conditional computation makes one branch 
LIVE and the other DEAD. Data flow to the operations 
ignores the liveness of the branch. Loading only one op- 
erand of a double operand operation in the DEAD branch 
results in RPG. The multiple-arguments in a function di- 
vide the dataflow computation into live vertical branches. 
RPG is created when a DEAD branch of a conditional 
computation in one vertical branch receives the data val- 
ues from the same vertical branch and/or from some other 
vertical branch. 

3) Control of Parallelism: Dataflow computations 
have huge parallelism, many times larger than the paral- 
lelism available in the hardware. Such computations tend 
to use excessive amounts of storage since many partial 
results are created long before resources are available to 
process them. Therefore, it is necessary to restrict excess 
program parallelism to approximately match machine par- 
allelism. 

The tokens generated must be dispatched to the corre- 
sponding nodes. The more tokens generated the greater 
the communication delay. The parallelism can be used ef- 
ficiently to hide latency. Balanced load distribution among 
PE’s increase the performance of the system and utiliza- 
tion of the resources. Unbalanced load distribution and 
heavy load degrade the performance of a dataflow system. 
Therefore, efficient techniques to reduce unnecessary to- 
ken generation and efficient communication ways are nec- 
essary. 

4) Sequential Computing Segments: A sequential 
computing segment is a program segment in which the 
maximum parallelism is less than the number of proces- 
sors and/or pipeline stages. Such computations are in- 
volved in conditional computations, recursive procedure 
calls and iterative computations which use previous com- 
puting results to continue computation. The performance 
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of the sequential computing segments in a program is im- 
portant in parallel computing. 

5) Parallel Execution of Conditional Computa- 
tions: Communication control systems and production 
systems consist of a large number of parallel conditional 
computations. Nondeterminate computations such as 
guarded expressions can be implemented in parallel with 
the use of the simple switch-t operation. The guarded con- 
dition evaluated as true enables successive computations 
to return the value of the guarded expression evaluation. 
The switch operation with two outputs used in the con- 
ditional computing implementation cannot be used in the 
parallel implementation of conditional computations 
without additional complex control mechanisms. 

6) Optimization of Datajow Computations: In func- 
tional languages, different occurrences of an expression 
always yield the same value. Loop invariant expressions 
produce the same value on each pass of the loop. The 
value produced by such common computation, CC’s, is 
evaluated once and can be used at all occurrences of the 
expression. Reusing CC’s within conditional expressions 
saves computational effort. Detecting and arranging CC’s 
in conditional expressions to optimize program execution 
in dataflow machines is a complicated process. Identify- 
ing nonstrict operators or functions and not evaluating the 
arguments that will not contribute to the final result of the 
computation optimizes dataflow computations. Such non- 
strict operators are identified and added to enhance the 
efficiency of dataflow computing systems. 

V .  PERFORMANCE EVALUATION USING THE EM-3 
A .  EM-3 Operational Model 

The functional configuration of the dataflow computing 
element is shown in Fig. 18. The result packets received 
at the input section are checked and the packets corre- 
sponding to single-operand operations are sent to the op- 
eration fetch section. The result packets corresponding to 
double-operand operators or to a function which has a 
plural number of arguments are sent to the operand match- 
ing section. This section matches and synchronizes the 
packets. The unmatched packets awaiting their partners 
are stored in the matching store and searched for when 
necessary. If the arrived result packet finds its partner in 
the matching store, both are removed from the store and 
sent to the instruction fetch section. 

The program store is attached to the instruction fetch 
section and stores the program to be executed. The op- 
eration fetch section fetches operations from the program 
store according to the operation addresses and combines 
them with their operands to generate internal execution 
packets. 

The invocation section is activated when a call opera- 
tion is fetched at the operation fetch section. A call op- 
eration invokes a defined function. The result store, sim- 
ulating the pseudoresult control mechanism, is handled by 
the search, invocation, exit, and execution sections. This 
store consists of a result table, a deferred buffer, and a 
storage for list cells. The result table manages a set of 

pseudoresults. Each entry consists of tags and a result 
value. The deferred buffer is storage for entrust packets 
until the pseudoresults become actual. The list cell stor- 
age is for list cells created by the cons operation. The 
storage management of the result table and the deferred 
buffer is carried out by the reference count garbage col- 
lection scheme. A pseudoresult identifier is created for the 
newly invoked function and an invocation packet is gen- 
erated. This packet is sent to the PE scheduler section. 

The initiation section accepts invoke packets and ex- 
tracts a function name. Its arguments are placed in the 
packets and generate result packets corresponding to each 
argument. The body of the function is activated by these 
result packets. 

The search section is activated by an entrust packet 
which is associated with a pseudoresult identifier. The 
pseudoresult table is searched using the pseudoresult 
identifier for the actual result. If found, the entrust packet 
is sent to the execution section. If not found, it is stored 
at the deferred buffer and waits for the completion of the 
predecessor operation assigned by the pseudoresult iden- 
tifier. 

The exit section stores the values of actual results or 
pointers to semiresults which correspond to each pseu- 
doresult of the function and are stored in the pseudoresult 
table at the exit of each section. If the activated entrust 
packets corresponding to the exit operation and waiting 
for completion of the function are executable, they are 
sent to the execution section, otherwise they are sent to 
the entrust section. 

The entrust section generates entrust packets and defers 
the execution of the operation when input packets include 
a pseudoresult. The generated entrust packets are sent to 
the PE assigned by the pseudoresult identifier. The sched- 
uler section decides the destination PE by using a hashing 
function. The preexecution section examines the operands 
of an execute packet. If there is a pseudoresult in an op- 
erand, the packet is sent to the entrust section, otherwise 
it is sent to the execution section. The output section sends 
external packets through the communication network to 
the corresponding destination PE’s. 

B. EMIL 
EMLISP is the high-level language and EMIL 

is the low level language used in the EM-3. Column 4 of 
Table I shows the basic definitions of EMIL codes. 
NULL, NUMBERP, ATOM, LESSTHAN, EQUAL, 
and GREATERTHAN are conditional operations. 
SWITCH-T and SWITCH-F operations are executed with 
all the conditional operations. Distribute, procedure, con- 
stant, call and return are dataflow computing support 
codes. The functionality of EMIL operations is summa- 
rized below. Here, E, T and F imply error, true and false, 
and integer x is greater than integer y .  

List operations: 
Fcar((x1 x2 * . . )) = xl Fcar(()) = E 
Fcdr((x1 x2 
Fcons(x1 (x2 * 

. . )) = (x2 x3 * * * ) Fcdr(()) = E 
)) = ( X I  x2 . . . ) 
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Attribute checking: 
Fatom(a) = T Fatom(x1 x2 . 
Fnumberp(1) = T Fnumberp(1 . - * ) = F 
Fnull(()) = T Fnull(x1 * * ) = F 
Fequal(x x) = T Fequal(x y) = F 
Fgreaterthan(x y) = T Fgreaterthan( y x) = F 
Flessthan(y x) = T Flessthan(x y) = F 

Numerical operations: 
Fplus (x y) = x+y Fdifference(x y) = x-y 
Fquotient(x y) = x/y Fremainder(x y) = rem x/y 
Ftimes(x y) = xy 

a )  = F 

C.  Performance Evaluation Measurements 
This section discusses the experimental results obtained 

by executing Benchmark programs in the EM-3 [28]-[34]. 
The software simulator, written in SIMULA, describes 
the EM-3 dataflow computing environment, which inter- 
prets and executes the EMIL code that describes the da- 
taflow computation. The Fibonacci function (F( 13)), the 
Ackermann function (AK(2 9)), sequential and parallel 
versions of the n queen problem (4QS and 4QP), quick- 
sort algorithm with maximum parallel data (QUI), Fibon- 
acci function F(13), same-fringe (SF) and copy (CP), are 
some of the nonnumerical and numerical computations 
performed in the EM-3. 

I) Effectiveness of Pseudoresult Model: Fig. 22 shows 
the performance measurements of SF with and without 
pseudoresults. When not using pseudoresults, the execu- 
tion of CONS is deferred until the operands become ac- 
tual data values. In this case, pseudoresults are generated 
but never used in any instruction. The execution time dif- 
ference in a single PE configuration is due to the entrust 
packet overhead. The number of entrust packets used 
without pseudoresults is five times greater than with pseu- 
doresults. Dataflow parallelism in SF is very small with- 
out pseudoresults and the performance is not improved 
with the increase of PE's. The pseudoresult dataflow 
computing model revealed the hidden parallelism in Lisp 
languages and accelerated the program execution in par- 
allel computing environment. 

2)  Effectiveness of Not(operation) Model: The effec- 
tiveness of the Not(operation) model is observed by com- 
paring the performance characteristics measurements. The 
timing parameters used for operation executions, shown 
in Table 11, are larger in the Not(operation) model than 
the traditional model. Figs. 23(a) and 23(b) show EMIL 
code and corresponding dataflow computing of Fibonacci 
numbers. Fig. 10 shows Not(operation) based dataflow 
computing of Fibonacci numbers. 

Ideal dataflow parallelism of an algorithm is the number 
of parallel operations that can be executed in one time 
step in an idealized machine. The idealized machine con- 
sists of unbounded processors and memories, where all 
operations have equal execution time and operators are 
executed as soon as operands are available. It is assumed 
that an unlimited number of concurrent operations can be 
executed in one time step. Fig. 24(a) shows the ideal da- 
taflow parallelism in F( 13) with the traditional computing 

',\ With Pseudo-reault 

h 

x 6  10 I S  I 
o i  2 4 8 

Fig. 2 2 .  Execution time variation-pseudoresult. 

TABLE I1 
TIMING PARAMETERS 

model. Here, the maximum parallelism, 495 concurrent 
operations, is observed at the 49th of 85 steps. Fig. 24(b) 
shows the ideal dataflow parallelism in the Not(operation) 
model. Here, the maximum parallelism, 261 concurrent 
operations, is observed at the 34th of 60 steps. This dem- 
onstrates the increase in real dataflow parallelism and the 
removal of a large number of unnecessary computations 
with pseudo-parallelism, and hence the reduction in da- 
taflow computing cost. 

Table 111 shows the frequency of operations executed 
in each benchmark program. This illustrates that SWITCH 
operations account for a large percentage of all operations 
executed. 

Fig. 25 shows the F(13) execution times in the tradi- 
tional and Not(operation) models for varying the number 
of EM-3 processing elements. The shape of the graph does 
not change, but the computing speed approximately dou- 
bles in the Not(operation) model. The reasons for speed 
increase include reduction of double-operand operations, 
parallelization of sequential computing segments, bal- 
anced pipeline stages and reduction of token generation 
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(PROCEDURE FIB 1 

GOO02 (‘DISTRIBUTE (GO003 MONO-0) (GO006 DATA) (GOO10 
DATA)(G0014 DATA) ) 
GO009 (‘EQ (C-l 1 ) (GOO04 MONO-CONTROL) (GO006 CONTROL) 
(GO007 MONO-CONTROL) ) 
GO004 (‘SWITCH-T (C-0 1 ) (GO018 (RETURN 1 )) ) 
GO006 (‘SWITCH-F (GO005 0 )  ) 
GO007 (‘SWITCH-F (C-0 2 ) (GO005 0 ) ) 
GO005 (‘EQ (GOO08 MONO-CONTROL) (GOOlO CONTROL) (GOO11 
MONO-CONTROL)(G0014 CONTROL) (GO015  MONO-CONTROL) ) 
GO008 (*SWITCH-T (C-0 1 ) (GOO18 (RETURN 1 ) )  ) 
GOOlO (‘SWITCH-F (GO609 0 )  ) 
GO011 (‘SWITCH-F (C-0 1 ) (GO009 1 )) ) 
GO009 (‘DIFFERENCE (GOO12 (ARG 1 1 )) ) 
GOO12 (‘CALL FIB 1 1 (GO017 0 ) ) 
GOO14 (‘SWITCH-F (GO013 0 )  ) 
GO015 (’SWITCH-F (C-0 2 ) (GO013 1 ) ) 
GO013 (‘DIFFERENCE (GO016 (ARG 1 
GO016 (‘CALL FIB 1 1 (GOO17 1 ) ) 
GO017 (‘PLUS (GO018 (RETURN 1 )) ) 
GO018 (’RETURN 1 ) 
END 

Fig. 23(a) 

(GOO02 MONO-0) ) 

1 )) ) 

Procedure  Fib 

D i s t r i b u t e  I 
I I 

Ll I 

Fig. 2S(b) 

Fig. 23.  Fibonacci-traditional. 

and traffic. In traditional dataflow computing, each sin- 
gle-operand conditional operation must execute two or 
more additional double-operand operators and must create 
many packets to support intermediate executions. These 
packets contribute much to the congestion. Not(operation) 
based single-operand conditional computation eliminates 
matching. Tokens are executed directly in the execution 
unit. In traditional dataflow computing, each double op- 
erand conditional operation must execute two or more ad- 
ditional double-operand operators and must create many 
packets to support intermediate executions. 
Not(operation) based double-operand conditional com- 
putation matches and executes directly to give the result 
immediately. Unnecessary packet creation is eliminated, 
thereby reducing congestion. 

Fig. 26 shows the average waiting time variation in the 
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Fig. 2 4 .  Ideal dataflow parallelism. 

TABLE I11 
EXECUTION FREQUENCY OF OPERATIONS 

CDR 0 44 104 0 482 
CONS 0 24 48 0 482 
PLUS 110 125 308 232 0 
DIFFERENCE 229 44 i o 0  464 0 
TIMES 0 0 0 0 0  
DIVIDE 0 0 0 0 0  

1060 958 2488 2434 2246 SWITCH-F 
SWITCH-T 820 363 900 841 2115 
ATOM 0 0 0 0 0  
NULL 0 39 90 0 483 
EQL 350 162 390 841 0 
GREATER P 0 0 0 0 0  
LESSP 0 0 0 0 189 
CALL 229 101 241 4G4 522 
DISTRIBUTE 460 366 875 465 1383 
PRINT 0 1 2 0 0  I! CONSTANT 1 0 3 3 0 0  

matching section in each PE of the 32-PE EM-3. The 
Not(operation) model reduces the waiting time to one 
tenth that of the traditional model. This is due to the re- 
duction of a large number of double-operand operations 
to be executed. 

Table IV compares the single-operand packets and dou- 
ble-operand packets generated in the execution of F( 13). 
The number of single-operand packets generated de- 
creased from 8673 to 4148. The number of result packets 
entering the matching section, double-operand opera- 
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Packet type Tkaditional 
One operand 8675 
Two operand 4766 
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Fig. 2 5 .  Execution time variation 
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Fig. 26. Matching waiting time-average. 

TABLE 1V 
PACKETS GENERATED 

tions, decreased from 4756 to 464. The Not(operation) 
model significantly reduces the number of single-operand 
packets, double operand packets and operations executed. 
This results in a proportionate reduction of computing and 
communication costs and increase in computing speed. 

Table V compares the number of operations executed 
showing the reduction in the number of operations exe- 
cuted. This reduction is due to the elimination of addi- 
tional double-operand operations used in the execution of 
traditional conditional computations. 

Table VI shows the maximum number of packets wait- 
ing in the queue, and the congestion of each functional 
unit of the EM-3 at the busiest instance. 

Fig. 27 shows the maximum number of packets waiting 
in the queue to the matching section in each PE of the 32- 
PE EM-3. The maximum number of packets in a single- 
PE EM-3 with traditional computing is very high com- 
pared to the Not(operation). The more tokens that are 
generated, the greater the communication delay and cost 
and waiting time in the queues. The Not(operation) com- 
puting model provides an efficient way of reducing tokens 
generated and hence reduces the token traffic. 

No RPG is collected in the matching store when exe- 
cuting F(13) with the Not(operation) model. The 
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TABLE V 
OPERATIONS EXECUTED 
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TABLE VI 
PACKET QUEUE 
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Fig. 27. Maximum packets-matching queue 

Not(operation) completely stops the flow of data from the 
predecessor of the conditional computation to the dead 
branch. Dispatching a special packet to execute all the 
operations in the dead branch, a control operation to stop 
the flow of data into the dead branch, setting the life of 
double operand packets or other efficient garbage collect- 
ing mechanism must be implemented to remove RPG 
completely. 

The Not(operation) computing model provides an effi- 
cient way of implementing parallel conditional computa- 
tions. The optimization will reduce the number of arith- 
metic and conditional operations, the size of the dataflow 
graph, execution time, parallelism, total number of to- 
kens. and token traffic. 

VI. CONCLUSIONS 
Computing models, languages, and architecture have 

not changed very much over the last thirty years. Appli- 
cations of new computing models, languages, and ma- 
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chines to numerical and nonnumerical computations show 
promise. The market is responding to the availability of 
such machines for intelligence computations. Intelligence 
computing research is highly dependent on high perfor- 
mance low cost parallel computing systems. Researchers 
are examining radically different approaches. The data- 
flow computing concept is the most effective, promising 
computing method to implement in machine architecture 
for high speed computing. This paper first analyzed the 
dataflow computing models such as static computing with 
and without acknowledgment signals, recursive dynamic, 
tagged token dynamic, eduction, dataflow-control flow, 
eager-lazy , pseudo-result, and Not(operation). 

The research on functional and logic programming lan- 
guages and their applications to intelligence computations 
will revolutionize the computer paradigm. Logic pro- 
gramming allows high level program specifications with- 
out explicit control directives. Functional languages pro- 
vide the facility to programmer not to think in terms of 
storage. Functional programming transforms objects to 
other objects without naming. The functional languages 
designed to map algorithms into dataflow computing such 
as VAL, Id, LUCID, VALID, DFC, and EMLISP were 
discussed. The DCBL transformation for dataflow com- 
puting and its application to Lisp were discussed. 

The major difficulty in realizing very high speed data- 
flow computing machines is the highly tuned, widely 
available and familiar von Neumann machines. The da- 
taflow machines for numerical and nonnumerical com- 
putations such as VIM, DDP, LAU, NEDIPS, MIT 
TTDA, Manchester Dataflow Machine, DDMl,  SIG- 
MA-1, EM-3, EDDY, DFM, PIM-D, and TOPSTAR 
were discussed. The SIGMA- 1, which predicts the high- 
est computing speeds, is a milestone in computing ma- 
chines. Some general problems in dataflow computing and 
performance evaluation measurements made in the EM-3 
dataflow computing environment were presented. 

A .  Further Research 
Considerable progress has been made in building data- 

flow machines during last few years. The construction of 
very high speed dataflow computing machines needs fur- 
ther research in the following areas. 

1) Different dataflow computing models. 
2) High-level languages suited to dataflow program- 

3 )  Low-level languages suited to dataflow architecture. 
4) Algorithms for specific applications and systems. 
5 )  Dataflow computing processors and system archi- 

6) Operating systems with efficient resource allocation 

7) Optimum design of an instruction set processor. 
8) High-speed operand matching mechanisms. 
9) Efficient structure memory implementations. 
10) Low cost high-speed communication networks to 

11)  Problems in dataflow computing. 

ming. 

tectures. 

schemes. 

interconnect PE’s. 

12) Fault-tolerant computing for 1000 to 10 000 pro- 

13) Impact of VLSI and device technology. 
14) Applications of dataflow computing concept in 

cessor dataflow computing machines. 

other fields. 
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