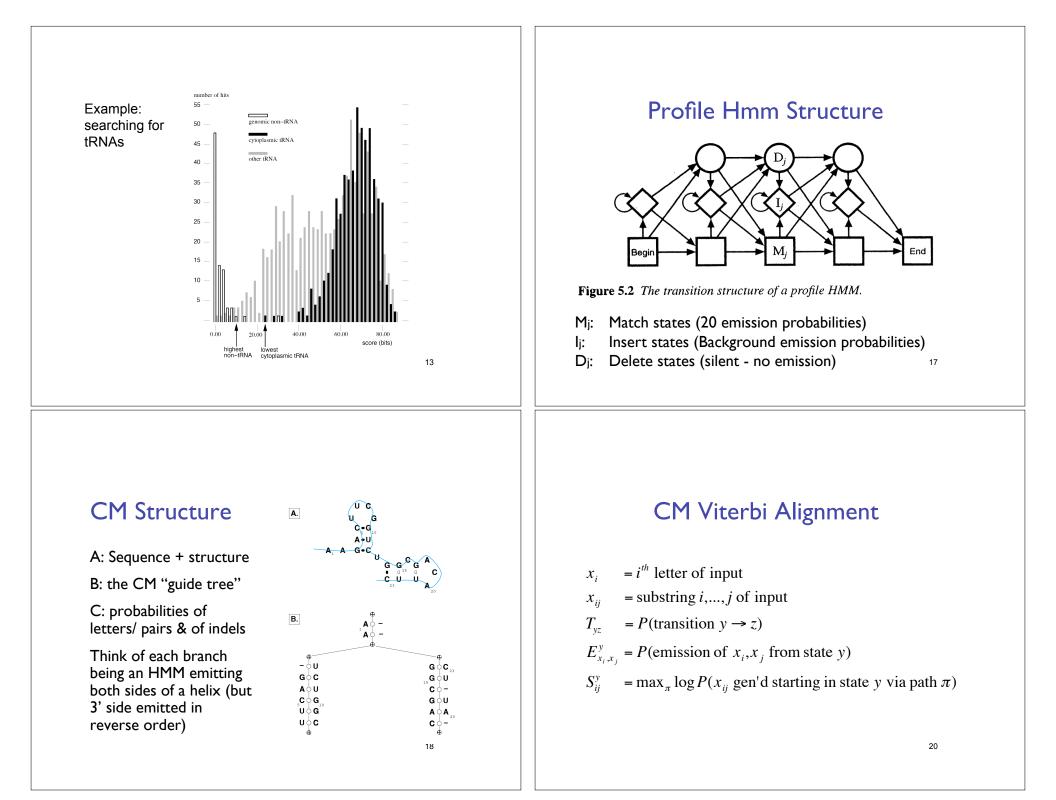
RNA Search and Motif Discovery

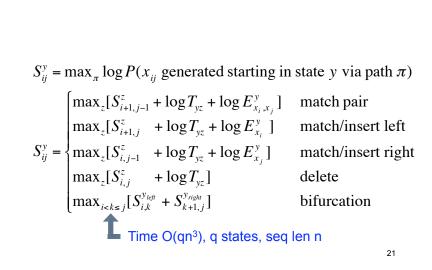
Lecture 9 CSEP 590A Autumn 2008

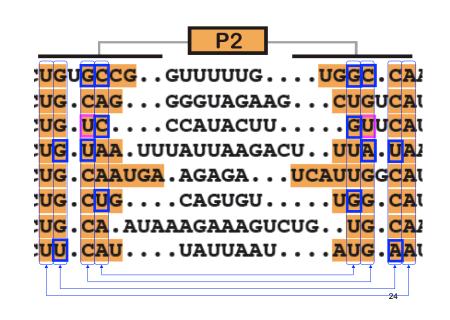
Motif Description

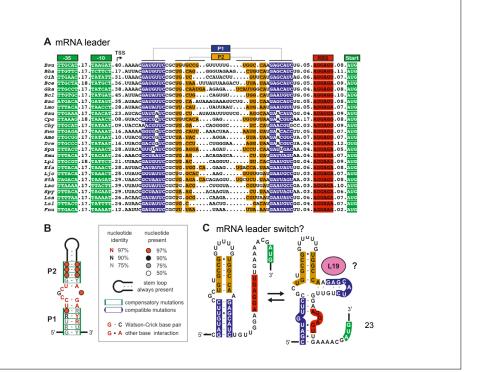
7

Outline

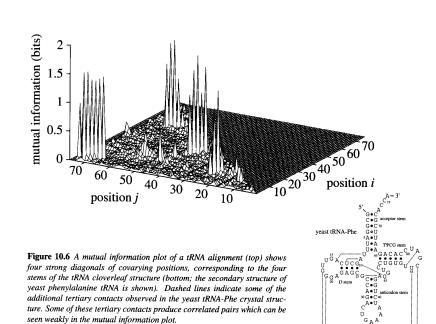

Whirlwind tour of ncRNA search & discovery RNA motif description (Covariance Model Review) Algorithms for searching Rigorous & heuristic filtering Motif discovery Applications


RNA Motif Models


"Covariance Models" (Eddy & Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids


Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate Con: model building hard, search sloooow



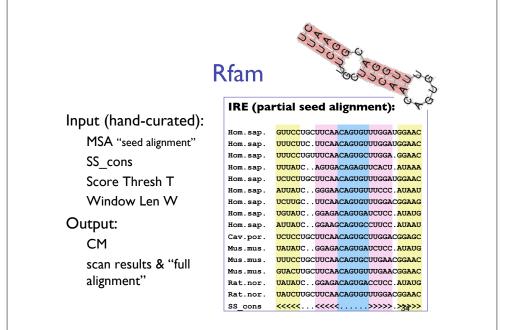
Mutual Information

 $M_{ij} = \sum_{xi,xj} f_{xi,xj} \log_2 \frac{f_{xi,xj}}{f_{xi}f_{xj}}; \quad 0 \le M_{ij} \le 2$

Max when *no* seq conservation but perfect pairing MI = expected score gain from using a pair state Finding optimal MI, (i.e. opt pairing of cols) is hard(?) Finding optimal MI *without pseudoknots* can be done by dynamic programming

Pseudoknots disallowed allowed $(\sum_{i=1}^{n} \max_{j} M_{i,j})/2$

Avg. Min Max ClustalV 1° info 2° info Dataset id id id accuracy (bits) (bits) 30.0-32.3 TEST .402 .144 1.0064% 43.7SIM100 .396 .131 .986 54%39.7 30.5-32.7 SIM65.362.111 .685 37% 31.828.6-30.7


Table 1: Statistics of the training and test sets of 100 tRNA sequences each. The average identity in an alignment is the average pairwise identity of all aligned symbol pairs, with gap/symbol alignments counted as mismatches. Primary sequence information content is calculated according to [48]. Calculating pairwise mutual information content is an NP-complete problem of finding an optimum partition of columns into pairs. A lower bound is calculated by using the model construction procedure to find an optimal partition subject to a non-pseudoknotting restriction. An upper bound is calculated as sum of the single best pairwise covariation for each position, divided by two; this includes all pairwise tertiary interactions but overcounts because it does not guarantee a disjoint set of pairs. For the meaning of multiple alignment accuracy of ClustalV, see the text.

Rfam – an RNA family DB Griffiths-Iones, et al., NAR '03,'05

Biggest scientific computing user in Europe - 1000 cpu cluster for a month per release

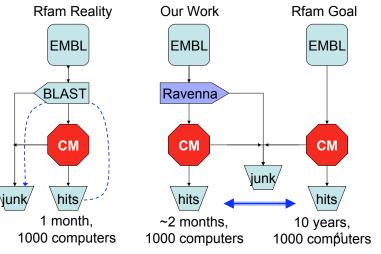
Rapidly growing:

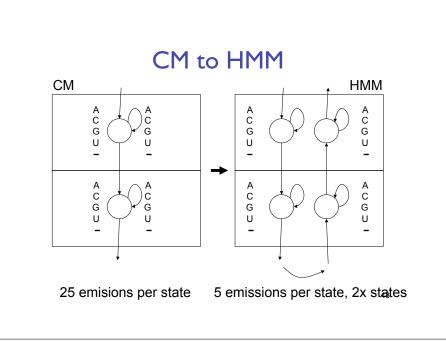
Rel 1.0, 1/03: 25 families, 55k instances Rel 7.0, 3/05: 503 families, >300k instances

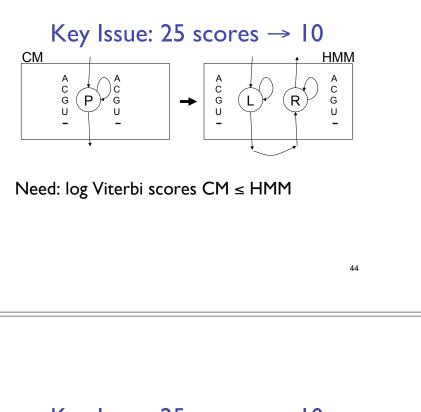
Faster Search

37

39

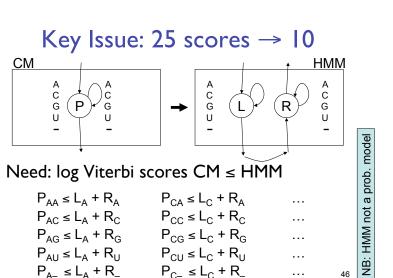

Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy


Zasha Weinberg & W.L. Ruzzo Recomb '04, ISMB '04, Bioinfo '06


38

RaveNnA: Genome Scale RNA Search

Typically 100x speedup over raw CM, w/ no loss in accuracy: drop structure from CM to create a (faster) HMM use that to pre-filter sequence; discard parts where, provably, CM score < threshold; actually run CM on the rest (the promising parts) assignment of HMM transition/emission scores is key (large convex optimization problem) CM's are good, but slow



Viterbi/Forward Scoring

Path π defines transitions/emissions Score(π) = product of "probabilities" on π NB: ok if "probs" aren't, e.g. $\Sigma \neq I$ (e.g. in CM, emissions are odds ratios vs Oth-order background) For any nucleotide sequence x:

Viterbi-score(x) = max{ score(π) | π emits x} Forward-score(x) = Σ { score(π) | π emits x}

Rigorous Filtering

$$\begin{split} \mathsf{P}_{\mathsf{A}\mathsf{A}} &\leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{A}} \\ \mathsf{P}_{\mathsf{A}\mathsf{C}} &\leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{C}} \\ \mathsf{P}_{\mathsf{A}\mathsf{G}} &\leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{G}} \\ \mathsf{P}_{\mathsf{A}\mathsf{U}} &\leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{U}} \\ \mathsf{P}_{\mathsf{A}\mathsf{-}} &\leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{L}} \end{split}$$

Any scores satisfying the linear inequalities give rigorous filtering

Proof:

CM Viterbi path score

- ≤ "corresponding" HMM path score
- Siterbi HMM path score (even if it does not correspond to any CM path)

47

Some scores filter better

 $\begin{array}{rcl} \mathsf{P}_{\mathsf{U}\mathsf{A}} = \mathsf{I} &\leq \mathsf{L}_{\mathsf{U}} + \mathsf{R}_{\mathsf{A}} \\ \mathsf{P}_{\mathsf{U}\mathsf{G}} = \mathsf{4} &\leq \mathsf{L}_{\mathsf{U}} + \mathsf{R}_{\mathsf{G}} \end{array}$

Option I: $L_U = R_A = R_G = 2$

Option 2: Opt 2: $L_U = 0, R_A = 1, R_G = 4$ $L_U + (R_A + R_G)/2 = 2.5$

Assuming ACGU $\approx 25\%$ Opt 1: $L_U + (R_A + R_G)/2 = 4$ Opt 2: $L_U + (R_A + R_G)/2 = 2.5$

Optimizing filtering

For any nucleotide sequence x: Viterbi-score(x) = max{ score(π) | π emits x } Forward-score(x) = Σ { score(π) | π emits x } Expected Forward Score $E(L_i, R_i) = \Sigma_{all sequences x}$ Forward-score(x)*Pr(x) NB: E is a function of L_i, R_i only Under Oth-order background model Optimization: Minimize $E(L_i, R_i)$ subject to score Lin.Ineq.s This is heuristic ("forward $\downarrow \Rightarrow$ Viterbi $\downarrow \Rightarrow$ filter \downarrow ") But still rigorous because "subject to score Lin.lneq.s"

Calculating E(L_i, R_i)

 $E(L_i, R_i) = \Sigma_x$ Forward-score(x)*Pr(x)

Forward-like: for every state, calculate expected score for all paths ending there; easily calculated from expected scores of predecessors & transition/emission probabilities/scores

Minimizing E(L_i, R_i)

Calculate $E(L_i, R_i)$ symbolically, in terms of emission scores, so we can do partial derivatives for numerical convex optimization algorithm

Forward: $f_k(i) = P(x_1 \dots x_i, \pi_i = k)$ $f_l(i+1) = e_l(x_{i+1}) \sum_k f_k(i)a_{k,l}$ Viterbi: $v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i)a_{k,l})$

51

$$\frac{\partial E(L_1, L_2, ...)}{\partial L_i}$$

"Convex" Optimization

Convex: local max = global max; simple "hill climbing" works Nonconvex: can be many local maxima, << global max; "hill-climbing" fails

Estimated Filtering Efficiency (139 Rfam 4.0 families)

Filtering fraction	# families (compact)	# families (expanded)	
< 10-4	105	110	∼100x
10 ⁻⁴ - 10 ⁻²	8	17	∫ speedup
.0110	11	3	
.1025	2	2	
.2599	6	4	
.99 - 1.0	7	3	

53

Results: New ncRNA's?

	# found	# found	# new
Name	BLAST + CM	rigorous filter + CM	
Pyrococcus snoRNA	57	180	123
Iron response element	201	322	121
Histone 3' element	1004	1106	102
Purine riboswitch	69	123	54
Retron msr	11	59	48
Hammerhead I	167	193	20
Hammerhead III	251	264	Ľ
U4 snRNA	283	290	
S-box	128	131	
U6 snRNA	1462	1464	:
U5 snRNA	199	200	
U7 snRNA	312	313	

Motif Discovery

60

62

RNA Motif Discovery

Typical problem: given a ~10-20 unaligned sequences of ~1kb, most of which contain instances of one RNA motif of, say, 150bp -- find it.

Example: 5' UTRs of orthologous glycine cleavage genes from γ-proteobacteria

61

Searching for noncoding RNAs

CM's are great, but where do they come from?

An approach: comparative genomics

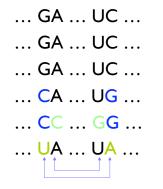
Search for motifs with common secondary structure in a set of functionally related sequences.

Challenges

Three related tasks Locate the motif regions. Align the motif instances. Predict the consensus secondary structure.

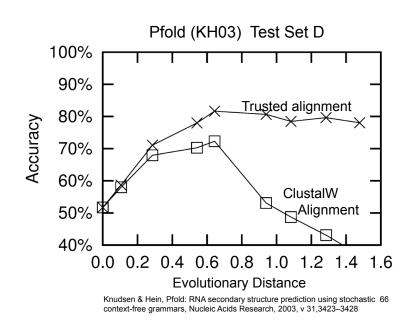
Motif search space is huge! Motif location space, alignment space, structure space. Cmfinder--A Covariance Model Based RNA Motif Finding Algorithm Bioinformatics, 2006, 22(4): 445-452

> Zizhen Yao Zasha Weinberg Walter L. Ruzzo University of Washington, Seattle


Approaches

Align sequences, then look for common structure

Predict structures, then try to align them Do both together


64

"Obvious" Approach I: Align First, Predict from Multiple Sequence Alignment

Compensatory mutations reveal structure, (core of "comparative sequence analysis") *but* usual alignment algorithms penalize them (twice)

Pitfall for sequence-alignmentfirst approach

Structural conservation \neq Sequence conservation

Alignment without structure information is unreliable

- CCCCCCCCAGGCTCCTGGT <mark>GCCGG</mark> - ATGA <mark>TGACGAGCTGGGTG</mark> - GAA-ACC TA CCCTG TGGGC<mark>ACCC</mark>-ATGTCCGA-GCCCCC<mark>CTGG</mark>AŤŤ
GGGATCATTGCAAGAGCAGCGTG ACTGACATTA TGAAGGCCTGTACTGAAGACAGCAA GCTGTTAGTACAGACC AGATG CTTCTTGGCAGGCCGTGTACCTCTTGGAAAACCTCAAT
AGS <mark>TTTGC</mark> ATTAA TGAGGATTACACAG AAAACCTTT-GTT <mark>AAG</mark> GGTTTGTGCGATCTGCTAATTG <mark>GCAAA</mark> ITTTTATTTTTAAAAAATTCTTACAGAAGAGTTCCATTTAAGAATGTTCGTGTATAGG
A <mark>GTGTG</mark> CGGATGATAACTACTGACGAAAGAGTCATCG <mark>ACTCAGTTAGTGGTGGATGGATGGAGTTAGTTGCTTGCCTCTCCCCATCTTTGTCTCCCTGGCAAGGAGAATATGCGGGACATGATGCTAAGAG</mark>
T93ACTGATA9GTA-GCCAT9GCTTCATCTGTCATG-TCTGCTTCTTTTTATATTGTGTATGATGGTCACAGTGTAA-GTTCCCACAGCTGTGACTTGATTTTTAA-AA <mark>ATGT</mark> 03GAAGA
TAAACTCGAACTCGAACTCGGCCAATTGCTGATTACGA-TTAACCACTGATTCCTGGGTCGCTGC-TTCGTGGCCGTCGGTCGGTCGCATTTATCAACTATTAGCTCCAATACCAATAGCTACAGGTTTTT
AAATT <mark>CTCGC</mark> TATATGACGATGCCAATCTCAAATGT-TCATTGGTTGCCATTTGATGAAATCAGTTTTGTTGCCACCTGATTGCAGAATTTTGTTTACCTTGCTCATTTTTTTCATTGAA-ACCACTTCTCAGA
GGGGCGGGAGTACAAGGTGCGTGTGACTGGAGCCACCCACTCCGACTCTGCAG <mark>ATGTT</mark> TGCAAATGACGACCGATTTTGAAATGGTCTCACGGCCAAA <mark>AACTCGTGTCC</mark> GACATC <mark>AACCC</mark> CCTTC
TTCTCCAGTGTTCTA <mark>GTTAC</mark> ATTGA <mark>TGAGAACAGAA-ACCA</mark> AAGACTATGACCTAGG <mark>GGTTTCT</mark> <mark>GTTGGAT</mark> AGCTC <mark>GTAAT</mark> TAAGAACGGAGAAAGAACAACAAAGACATATTTTCCAGTTTTTTTT
CAAACTGATGGATA-GCCATTGGTATTCATCTATTTTAACTCTGTGTCTTTACA <mark>TATTT</mark> GTTTATGATGGCCACAGCCTAAA-GTACACACGGCTGTGACTTGATTCA <mark>AAA</mark> -G <mark>A</mark> A
TGAGCAACTTGTCT-GATGACTGGGAAAGGAGGACCTGCAACCATCTGACTTGGT <mark>CTCTG</mark> TTAA <mark>TGACGTCTCCCC</mark> TCTAA-ACCC- <mark>C</mark> ATTAA <mark>GGACTGGGAGAGGCAGA</mark> -GCAAGCCTC <mark>CAGAG</mark>
GATTACTGGCTGCACTCTGGGGGGC <mark>GGTTC</mark> TTCCA TGATGGTGTTTCCT CTAAA TT GCA CGGAGAAACACCTGA TTTCCAGAAA-ATTCCAGAAGAGGCGCTGGTCCCATCCATTCCCGATGCCT
AGACCAGGCAAGACAACTGTGAGC-GCGATGGCCGTGTACCCCAGGTCAGGGGGGG <mark>GTGTC</mark> TCTA <mark>TGAAGGAGGGGCCC</mark> GAAG <mark>CCC</mark> TTGT <mark>93GCGGGCCTCCCCTGAG</mark> CCCGTCTGTGTGGTGCCAG
CACTICAGAAGGCT-TCTGAATGGAACCATCTCTTGACA-TTTGTTTCTATA-ATATTTGT-CATGACAGTCACAGGCATAAA-GCGCAGACGGCTGTGACCTGATTTTAGA-AAATTTTTTAGA

same-colored boxes *should* be aligned

Approaches

Align sequences, then look for common structure

Predict structures, then try to align them single-seq struct prediction only ~ 60% accurate; exacerbated by flanking seq; no biologicallyvalidated model for structural alignment

Do both together

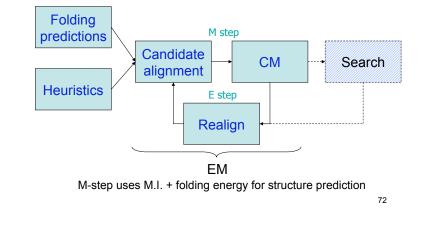
Sankoff – good but slow Heuristic

68

Our Approach: CMfinder

Simultaneous alignment, folding and CMbased motif description using an EM-style learning procedure

Yao, Weinberg & Ruzzo, *Bioinformatics*, 2006


Design Goals

Find RNA motifs in unaligned sequences Seq conservation exploited, but not required Robust to inclusion of unrelated sequences Robust to inclusion of flanking sequence Reasonably fast and scalable Produce a probabilistic model of the motif that can be directly used for homolog search

Alignment \rightarrow CM \rightarrow Alignment

Similar to HMM, but slower Builds on Eddy & Durbin, '94 But new way to infer which columns to pair, via a principled combination of mutual information and predicted folding energy And, it's local, not global, alignment (harder)

CMfinder Outline

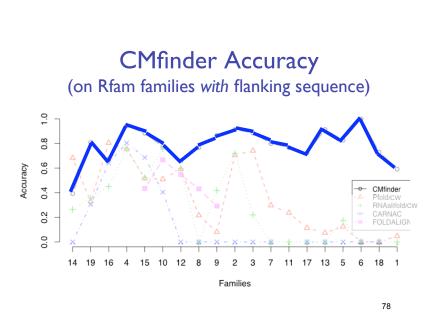
Initial Alignment Heuristics

fold sequences separately candidates: regions with low folding energy compare candidates via "tree edit" algorithm find best "central" candidates & align to them BLAST anchors

73

Structure Inference

Part of M-step is to pick a structure that maximizes data likelihood


We combine:

mutual information

position-specific priors for paired/unpaired

(based on single sequence thermodynamic folding predictions) intuition: for similar seqs, little MI; fall back on singlesequence folding predictions

data-dependent, so not strictly Bayesian

Application I

A Computational Pipeline for High Throughput Discovery of *cis*-Regulatory Noncoding RNA in Prokaryotes.

Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. PLoS Computational Biology. 3(7): e126, July 6, 2007.

80

Predicting New *cis*-Regulatory RNA Elements

Goal:

Given unaligned UTRs of coexpressed or orthologous genes, find common structural motifs

Difficulties:

Low sequence similarity: alignment difficult

Varying flanking sequence

Motif missing from some input genes

Searching for noncoding RNAs

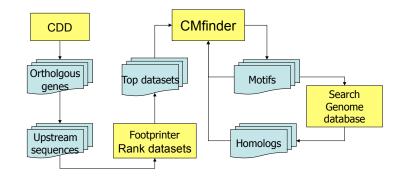
CM's are great, but where do they come from? An approach: comparative genomics Search for motifs with common secondary structure in a set of functionally related sequences. Challenges Three related tasks Locate the motif regions. Align the motif instances. Predict the consensus secondary structure. Motif search space is huge! Motif location space, alignment space, structure space.

Right Data: Why/How

We can recognize, say, 5-10 good examples amidst 20 extraneous ones (but not 5 in 200 or 2000) of length 1k or 10k (but not 100k)

Regulators often near regulatees (protein coding genes), which are usually recognizable cross-species So, find similar genes ("homologs"), look at adjacent DNA

(Not strategy used in vertebrates - 1000x larger genomes)


Approach

Get bacterial genomes

For each gene, get 10-30 close orthologs (CDD)
Find most promising genes, based on conserved sequence motifs (Footprinter)
From those, find structural motifs (CMfinder)
Genome-wide search for more instances (Ravenna)
Expert analyses (Breaker Lab, Yale)

84

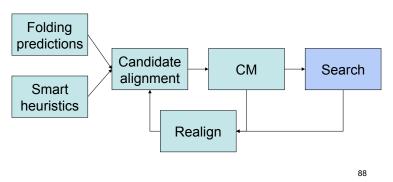
A pipeline for RNA motif genome scans

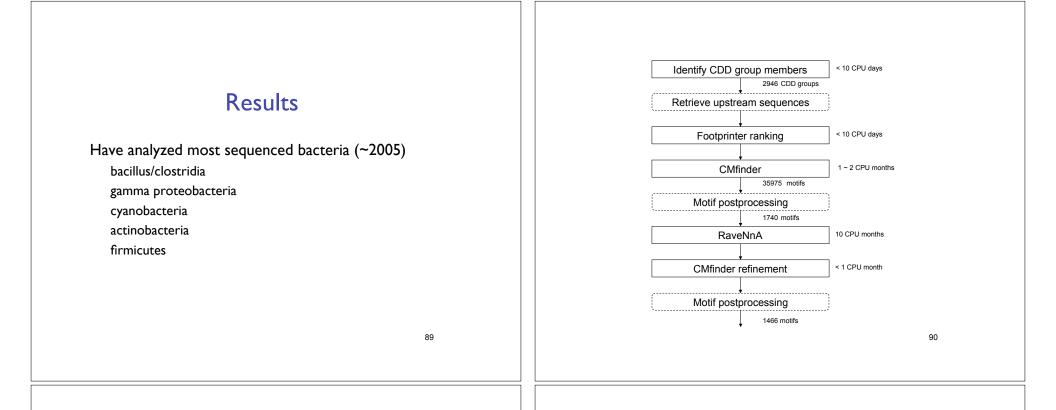
Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. A Computational Pipeline for High Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes. PLoS Computational Biology. 3(7): e126, July 6, 2007.

Genome Scale Search: Why

Many riboswitches, e.g., are present in ~5 copies per genome

In most close relatives


More examples give better model, hence even more examples, fewer errors


More examples give more clues to function - critical for wet lab verification

But inclusion of non-examples can degrade motif...

Genome Scale Search

CMfinder is directly usable for/with search

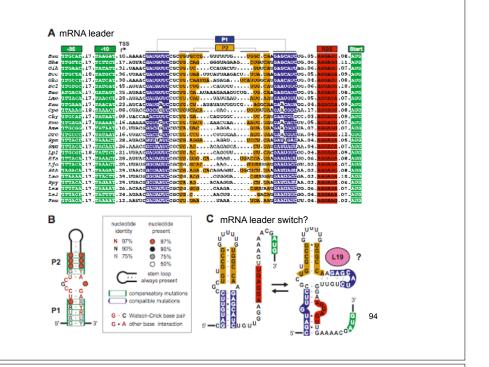

	Rank		Score	#				CDD	Rfam
RAV	CMF	FP		RAV (CMF	ID	Gene	Descriptio n	
0	43	107	3400	367	11	9904	llvB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box
1	10	344	3115	96	22	13174	COG3859	Predicted membrane protein	RF00059 THI
2	77	1284	2376	112	6	11125	MetH	Methionine synthase I specific DNA methylase	RF00162 S_box
3	0	5	2327	30	26	9991	COG0116	Predicted N6-adenine-specific DNA methylase	RF00011 RNaseP bact b
4	6	66	2228	49	18	4383	DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RF00050 RFN
7	145	952	1429	51	7	10390	GuaA	GMP synthase	RF00167 Purine
8	17	108	1322	29	13	10732	GcvP	Glycine cleavage system protein P	RF00504 Glycine
9	37	749	1235	28	7	24631	DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bact
10	123	1358	1222	36	6	10986	CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamin
20	137	1133	899	32	7	9895	LysA	Diaminopimelate decarboxylase	RF00168 Lysine
21	36	141	896	22	10	10727	TerC	Membrane protein TerC	RF00080 yybP-ykoY
39	202	684	664	25	5	11945	MgtE	Mg/Co/Ni transporter MgtE	RF00380 ykoK
40	26	74	645	19	18	10323	GlmS	Glucosamine 6-phosphate synthetase	RF00234 glmS
53	208	192	561	21	5	10892	OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ¹
122	99	239	413	10	7	11784	EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkD
255	392	281	268	8	6	10272	COG0398	Uncharacterized conserved protein	RF00023 tmRNA

Table 1: Motifs that correspond to Rfam families. "Rank": the three columns show ranks for refined motif clusters after genome scans ("RAV"), CMfinder motifs before genome scans ("CMF"), and FootPrinter results ("FP"). We used the same ranking scheme for RAV and CMF. "Score"

Rfam		М	embersh	ip	Overlap			Structure		
		#	Sn	Sp	nt	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	0.74 ¹	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	0.56 ¹	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.78

Table 2: Motif prediction accuracy vs prokaryotic subset of Rfam full alignments. "Membership": the number of sequences in the overlap between our predictions and Rfam's ("#"), the sensitivity ("Sn") and specificity ("Sp") of our membership predictions. "Overlap": avg length of overlap between our predictions and Rfam's ("nt"), the fractional lengths of the overlapped region in Rfam's predictions ("Sn") and in ours ("Sp"). "Structure": avg number of correctly predicted canonical base pairs (in overlapped regions) and the sensivity ("Sn") and specificity ("Sp") of our predictions. "After another iteration of RaveNnA scan and refinement, the membership sensitivities of Glycine and Cobalamin increased to 76% and 98% respectively, while the specificity of Ølycine remained the same, and specificity of Cobalamin dropped to 84%.

Rank	#		Gene: Description	Annotation
6	69	28178	DHOase IIa: Dihydroorotase	PyrR attenuator [22]
15	33	10097	RpIL: Ribosomal protein L7/L1	L10 r-protein leader; see Supp
19	36	10234	RpsF: Ribosomal protein S6	S6 r-protein leader
22	32	10897	COG1179: Dinucleotide-utilizing enzymes	6S RNA [25]
27			RpsJ: Ribosomal protein S10	S10 r-protein leader; see Supp
29	11	15150	Resolvase: N terminal domain	
31	31	10164	InfC: Translation initiation factor 3	IF-3 r-protein leader; see Supp
41	26	10393	RpsD: Ribosomal protein S4 and related proteins	S4 r-protein leader; see Supp [30]
44	30	10332	GroL: Chaperonin GroEL	HrcA DNA binding site [46]
46	33	25629	Ribosomal L21p: Ribosomal prokaryotic L21 protein	L21 r-protein leader; see Supp
50	11	5638	Cad: Cadmium resistance transporter	[47]
51	19	9965	RpIB: Ribosomal protein L2	S10 r-protein leader
55			RNA pol Rpb2 1: RNA polymerase beta subunit	
69			COG3830: ACT domain-containing protein	
72	28	4174	Ribosomal S2: Ribosomal protein S2	S2 r-protein leader
74	9	9924	RpsG: Ribosomal protein S7	S12 r-protein leader
86	6	12328	COG2984: ABC-type uncharacterized transport system	
88	19	24072	CtsR: Firmicutes transcriptional repressor of class III	CtsR DNA binding site [48]
100	21	23019	Formyl trans N: Formyl transferase	
103	8	9916	PurE: Phosphoribosylcarboxyaminoimidazole	
117			COG4129: Predicted membrane protein	
			RpIO: Ribosomal protein L15	L15 r-protein leader
121			RpmJ: Ribosomal protein L36	IF-1 r-protein leader
129	4	23962	Cna B: Cna protein B-type domain	
130	9	25424	Ribosomal S12: Ribosomal protein S12	S12 r-protein leader
131	9	16769	Ribosomal L4: Ribosomal protein L4/L1 family	L3 r-protein leader
136	7	10610	COG0742: N6-adenine-specific methylase	ylbH putative RNA motif [4]
			Pencillinase R: Penicillinase repressor	Blal, Mecl DNA binding site [49]
			Ribosomal S9: Ribosomal protein S9/S16	L13 r-protein leader; Fig 3
			Ribosomal L19: Ribosomal protein L19 L19 r-protein leader; Fig 2	
164			GapA: Glyceraldehyde-3-phosphate dehydrogenase/erythrose	
174	8	13849	COG4708: Predicted membrane protein	
176	7	10199	COG0325: Predicted enzyme with a TIM-barrel fold	
182			RpmF: Ribosomal protein L32	L32 r-protein leader
187	11	27850	LDH: L-lactate dehydrogenases	. 93
190	11	10094	CspR: Predicted rRNA methylase	9.
194	9	10353	FusA: Translation elongation factors	EF-G r-protein leader

Application II

Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline.

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, Block, Sudarsan, Neph, Tompa, Ruzzo and Breaker. Nucl. Acids Res., July 2007 35: 4809-4819.

95

nt: nucleotides, R: A/G, Y: C/L For pray-shaded nucleotide Legend GEMM mini-vkk(97% 90% 75% 97% 90% 75% С •RGCRGAY 1.5 m boxed = Y • • • • C / R • • • • G / confirmed R - Y riboswitch SAH MAEB (+2 more) v i i i i A O O A U O suc/ COG4708 RGCCG

Weinberg, et al. Nucl. Acids Res., July 2007 35: 4809-4819.

New Riboswitches

SAM – IV	(S-adenosyl methionine)
SAH	(S-adenosyl homocystein)
MOCO	(Molybdenum Cofactor)
PreQI – II	(queuosine precursor)
GEMM	(cyclic di-GMP)

GEMM regulated genes

Pili and flagella Secretion Chemotaxis Signal transduction

Chitin Membrane Peptide Other - *tfoX,* cytochrome c

GEMM sense a metabolite (cyclic di-GMP) produced for signal transduction or for cell-cell communication.

98

Utility?

Unknown

BUT

- E.g., there are no known human riboswitches, so potentially fewer side effects from drugs that might target them
- Some such drugs (w/ previously unknown targets) have been known for decades!

ncRNA discovery in Vertebrates

Comparative genomics beyond sequence based alignments: RNA structures in the ENCODE regions

E. Torarinsson, Z. Yao, E. D. Wiklund, J. B. Bramsen , C. Hansen, J. Kjems, N. Tommerup, W. L. Ruzzo and J. Gorodkin

Genome Research, Jan 2008

99

ncRNA discovery in Vertebrates

Previous studies focus on highly conserved

regions (Washietl, Pedersen et al. 2007)

Evofold (Pedersen et al. 2006)

RNAz (Washietl et al. 2005)

We explore regions with weak sequence conservation

110

Approach

Extract ENCODE Multiz alignments Remove exons, most conserved elements. 56017 blocks, 8.7M bps.
Apply CMfinder to both strands.
10,106 predictions, 6,587 clusters. False positive rate: 50% based on a heuristic ranking function.

111

Search in Vertebrates

Extract ENCODE Multiz alignments Remove exons, most conserved elements. 56017 blocks, 8.7M bps. Trust 17-way alignment for orthology, not for detailed alignment

Apply CMfinder to both strands.

10,106 predictions, 6,587 clusters.

High false positive rate, but still suggests 1000's of RNAs.

(We've applied CMfinder to whole human genome: O(1000) CPU years. Analysis in progress.)

Assoc w/ coding genes

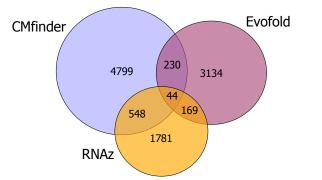
Many known human ncRNAs lie in introns
Several of our candidates do, too, including some of the tested ones
#6: SYN3 (Synapsin 3)
#10: TIMP3, antisense within SYN3 intron
#9: GRM8 (glutamate receptor metabotropic 8)

Overlap with known transcripts

- Input regions include only one known ncRNA hasmir-483, and we found it.
- 40% intergenetic, 60% overlap with protein coding gene

Sense	Antisense	Both	Intron	5'UTR	3'UTR
1332	1721	884	3274	551	89
(33.8%)	(43.7%)	(22.5%)	(83.1%)	(14%)	(2.3%)

114


Overlap w/ Indel Purified Segments

IPS presumed to signal purifying selection Majority (64%) of candidates have >45% G+C Strong P-value for their overlap w/ IPS

G+C	data	Р	Ν	Expected	Observed	P-value	%
0-35	igs	0.062	380	23	24.5	0.430	5.8%
35-40	igs	0.082	742	61	70.5	0.103	11.3%
40-45	igs	0.082	1216	99	129.5	0.00079	18.5%
45-50	igs	0.079	1377	109	162.5	5.16E-08	20.9%
50-100	igs	0.070	2866	200	358.5	2.70E-31	43.5%
all	igs	0.075	6581	491	747.5	1.54E-33	100.0%

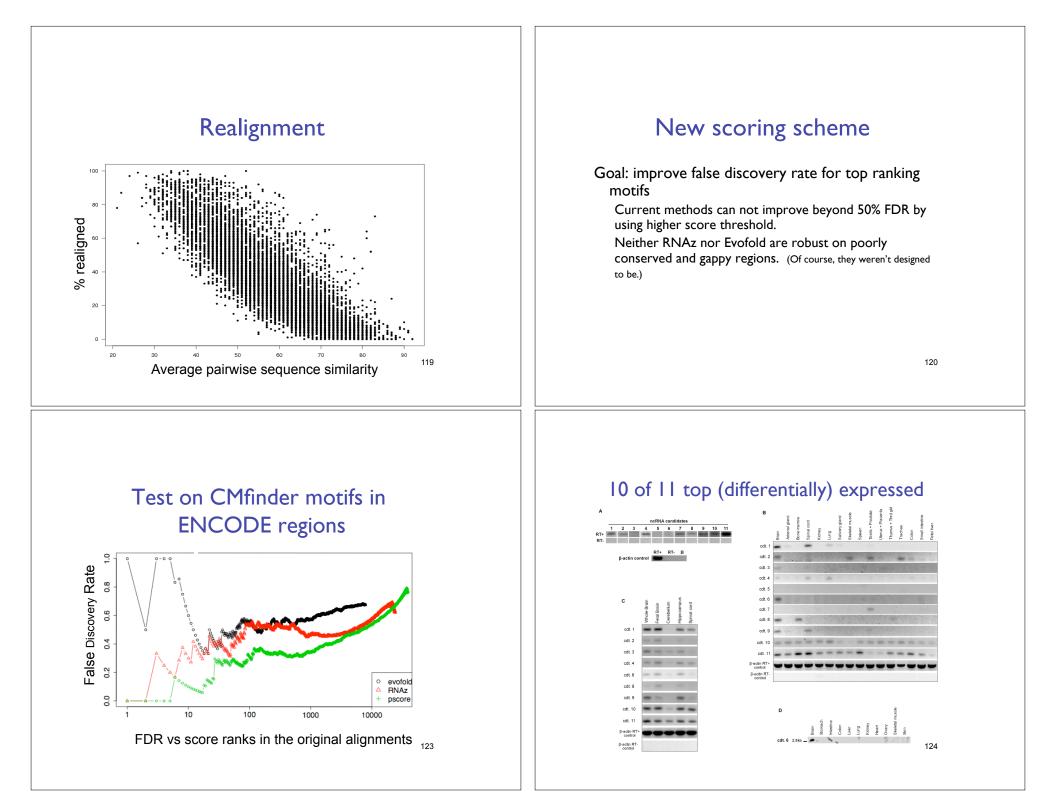
115

Comparison with Evofold, RNAz

Small overlap (w/ highly significant p-values) emphasizes complementarity

Alignment Matters B. The original MULTIZ alignment without the flanking regions – RNAz Score: 0.132 (no RNA) GGTCACTTCAAAGAGGGCTT-GTGGGGGCTGTGAAACCAA AACAGTATGACCAAAAACTGAAG GGACATTTCANTGCGGGCTC-ATGGGGCTGTGAAGCCAA TAACACTATGACCAAGGACTGAAA! GGTCATTTCAAAGAGGGCTT-ATGAGACCA--AAACCGG CTTAATGCTGTGACCAAAGATTGAAGI CTTAACTCTGTGACCAAATATTAGAG!

bosTau2.chr18 canFan2.chr3 oryCunl rheMac2.chr2

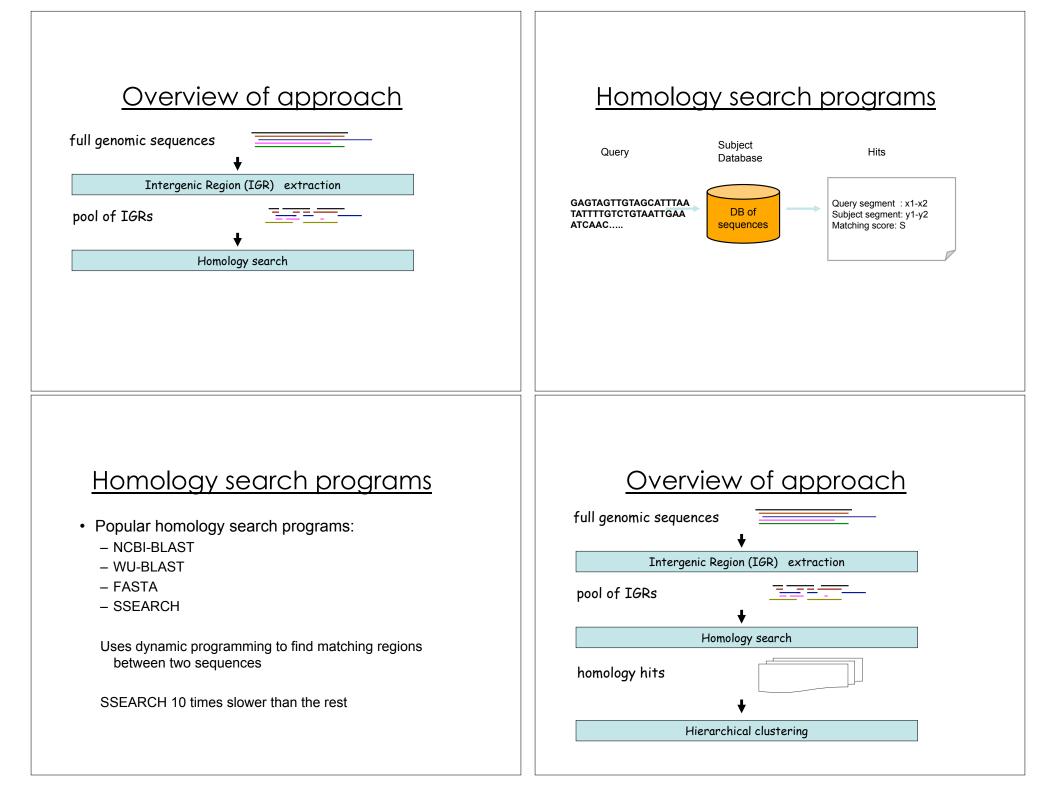

hg18.chr3

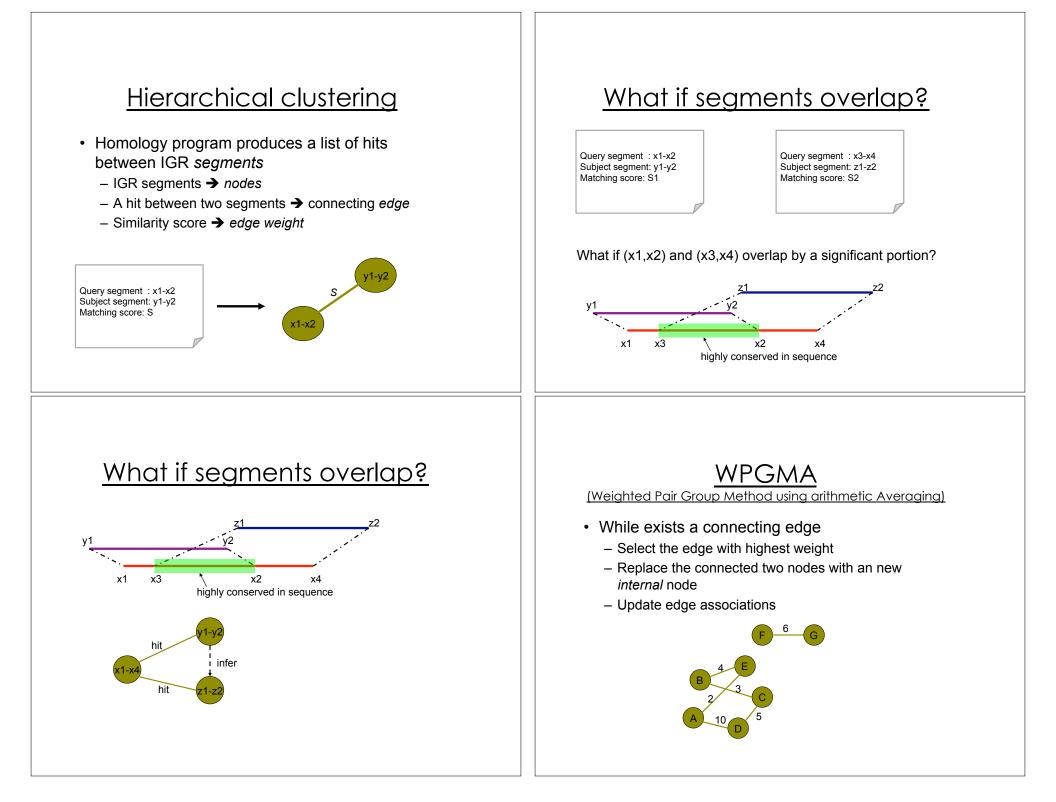
panTrol.chr17

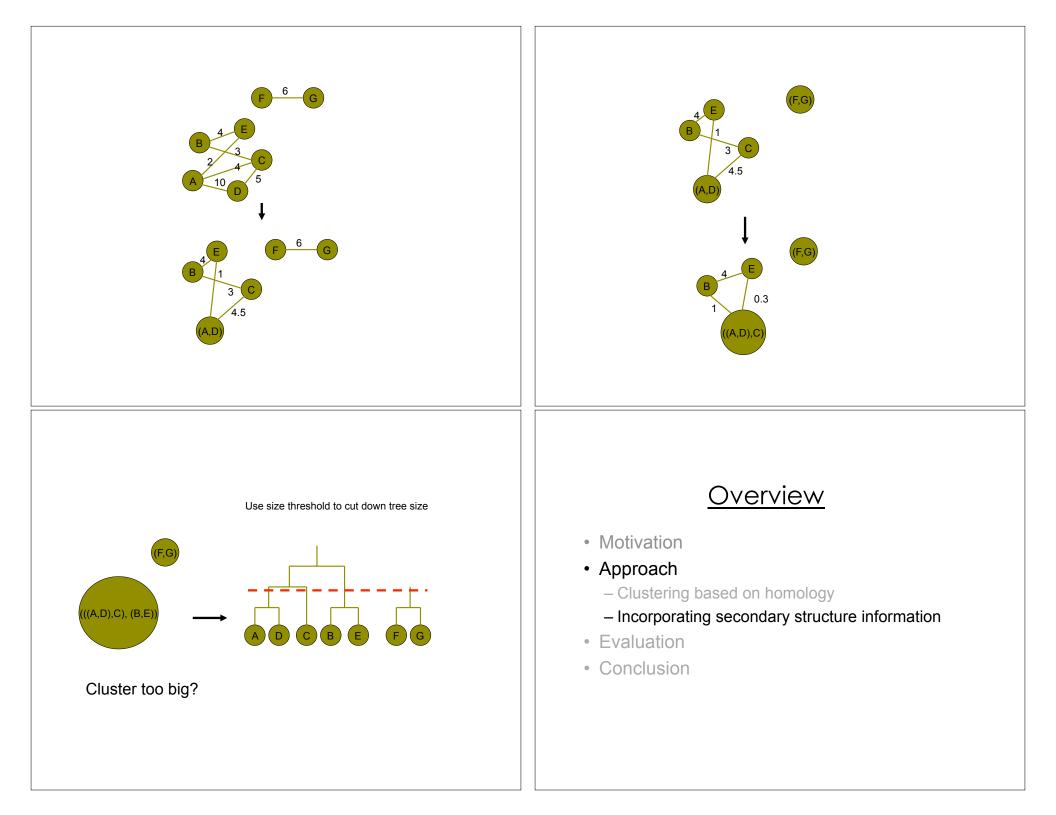
GGTCATTTCAAAGAGGGCTTTGTGGAACTA--AAACCAA GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCAAG -CTT AACTGTATGCCCAAAGATTAAAG1 GGTCACTTCAAAGAGGGGCTT-GTGGGGGCTGTGAAACCAA ACCURCTON BACAGTAVABOCAABGACTGABC

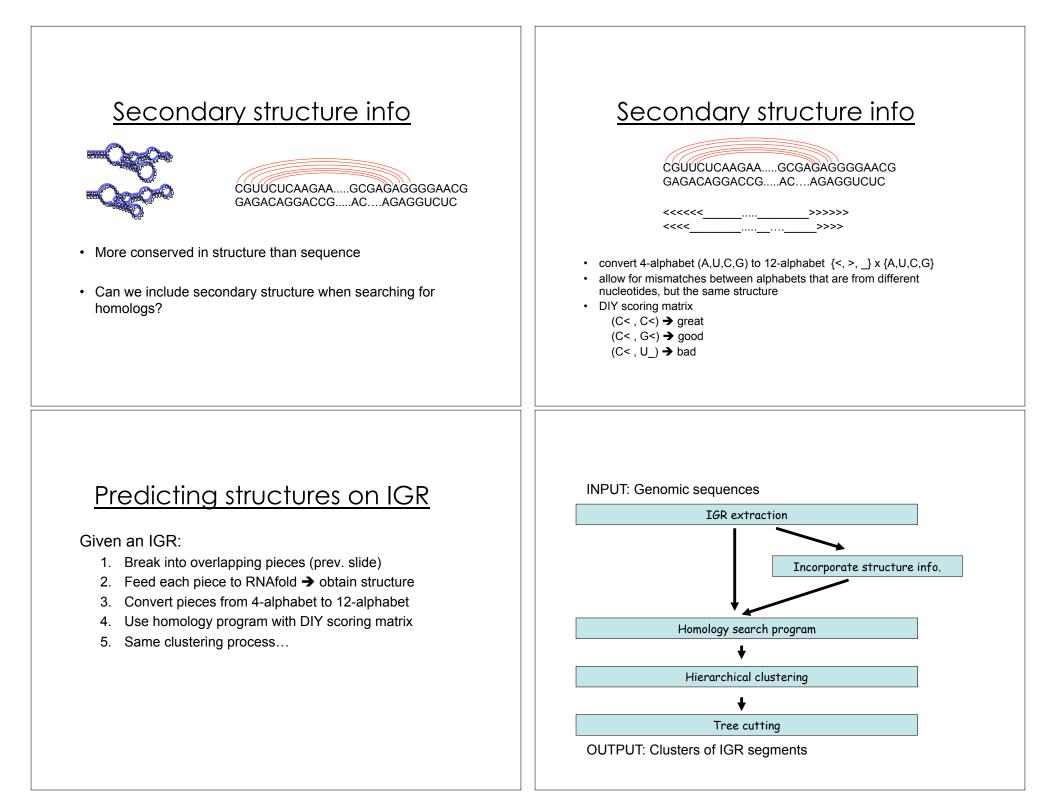
C. The local CMfinder re-alignment of the MULTIZ block - RNAz Score: 0.709 (RNA)

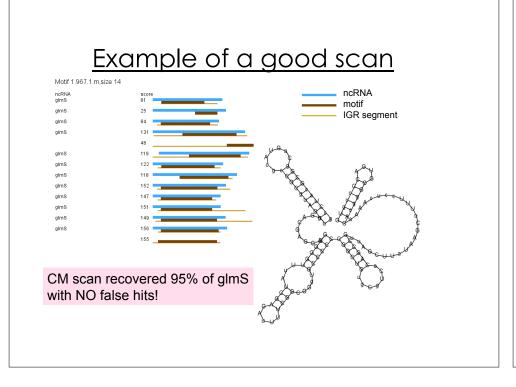
hg18.chr3	GGTCACTTCAAAGAGGGCTT-GTGGGGCTGTGAAA-CCAA <mark>GAGGTGTT</mark> AACAGTATGACCAAAAACTGAI
panTrol.chr17	GGRCATTTCANTGCGGGCTC-ATGGGGCTGT-GAAGCCAA <mark>GAGCTATT</mark> AACACTATGACCCAAGGACTGAJ
bos7au2.chr18	GGTCATTTCAAAGAGGGCTT-ATGAGACCAAAA-CCGG <mark>GAGGTCTT</mark> AATGCTGTGACCAAAGATTGAI
CanFam2.chr3	GSTCATTTCAAAGAGGGCTTTGTGGAACTAAAA-CCAA <mark>GGGCTCTT</mark> AACTCTGTGACCAAA7AT7AGI
oryCunl	GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTCAA <mark>GAACTCTT</mark> AACTGTATGCCCAAAGATTAAJ
zheMac2.chr2	GGTCACTTCAAAGASGGCTT-GTGGGGCTGTGAAA-CCAAGASG- <mark>TAGGTGTT</mark> AACAGTATAACCAAAGACTGAI
	(((((())))))))))))))))))))




Summary


 ncRNA - apparently widespread, much interest Covariance Models - powerful but expensive tool for ncRNA motif representation, search, discovery Rigorous/Heuristic filtering - typically 100x speedup in search with no/little loss in accuracy CMfinder - good CM-based motif discovery in unaligned sequences Pipeline integrating comp and bio for ribowitch discovery Potentially many ncRNAs with weak sequence conservation in vertebrates. 	Lots of structurally conserved ncRNA Functional significance often unclear But high rate of confirmed tissue-specific expression in (small) set of top candidates in humans BIG CPU demands Still need for further methods development & application
Thanks!	Discovering ncRNAs in prokaryotes through genome-wide clustering Elizabeth Tseng UW CSE


Summary


<u>Overview</u> Our work • Goal Motivation - Clustering for homologous ncRNA prediction Approach - Clustering based on homology • Our Approach - Incorporating secondary structure information - Cluster genomic sequences by homology - Incorporate secondary structure information Evaluation Conclusion Challenges - Input: large search space - Homology inference: what tools to use? - How to evaluate? full genomic sequence for species XOverview of approach + strand strand GenBank annotated CDS / tRNA / rRNA / repeat regions for X full genomic sequences 3' Intergenic Region (IGR) extraction remove annotated regions 15bps discard IGRs < 15 bps discard IGRs adjacent to rRNA extracted IGR for species X

