CSE P 590 A

Markov Models and Hidden Markov Models

http://upload.wikimedia.org/wikipedia/commons/b/ba/Calico_cat

Dosage Compensation and X-Inactivation

2 copies (mom/dad) of each chromosome I-23
Mostly, both copies of each gene are expressed
E.g., A B O blood group defined by 2 alleles of I gene
Women (XX) get double dose of X genes (vs XY)?
So, early in embryogenesis:

- One X randomly inactivated in each cell _ How?
- Choice maintained in daughter cells

Calico: major coat color gene is on X

Reminder: Proteins "Read" DNA

Different patterns of hydrophobic methyls, potential H bonds, etc. at edges of different base pairs. They're accessible, esp. in major groove

Same Pairing Methyl-C alters major groove profile (\therefore TF binding), but not basepairing, transcription or replication

Figure 7-7 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA Methylation

CpG - 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)

C of CpG is often (70-80%) methylated in mammals i.e., CH₃ group added (both strands)

cytosine

DNA Methylation–Why

In vertebrates, it generally silences transcription (Epigenetics) X-inactivation, imprinting, repression of mobile elements, cancers, aging, and developmental differentiation

E.g., if a stem cell divides, one daughter fated to be liver, other kidney, need to

 NH_2

cytosine

(a) turn off liver genes in kidney & vice versa,

(b) remember that through subsequent divisions

How?

(a) Methylate genes, esp. promoters, to silence them

(b) after ÷, DNA methyltransferases convert hemi- to fully-methylated (& deletion of methyltransferse is embrionic-lethal in mice)

Major exception: promoters of housekeeping genes

"CpG Islands"

Methyl-C mutates to T relatively easily Net: CpG is less common than expected genome-wide: f(CpG) < f(C)*f(G)BLIT in some regions (e.g. active

BUT in some regions (e.g. active promoters), CpG remain unmethylated, so CpG → TpG less likely there: makes "CpG Islands"; often mark gene-rich regions

cytosine

thymine

CpG Islands

CpG Islands

More CpG than elsewhere (say, CpG/GpC>50%) More C & G than elsewhere, too (say, C+G>50%) Typical length: few 100 to few 1000 bp

Questions

Is a short sequence (say, 200 bp) a CpG island or not? Given long sequence (say, 10-100kb), find CpG islands?

Markov & Hidden Markov Models

References (see also online reading page): Eddy, "What is a hidden Markov model?" Nature Biotechnology, 22, #10 (2004) 1315-6.

- Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998
- Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

Independence

A key issue: Previous models we've talked about assume *independence* of nucleotides in different positions - definitely unrealistic.

Markov Chains

A sequence x_1, x_2, \ldots of random variables is a *k*-th order Markov chain if, for all *i*, *i*th value is independent of all but the previous k values:

 $P(x_i \mid x_1, x_2, \dots, x_{i-1}) = P(x_i \mid x_{i-k}, x_{i-k+1}, \dots, x_{i-1})$

Example 1: Uniform random ACGT Example 2: Weight matrix model Example 3: ACGT, but ↓ Pr(G following C)

0th order lst order

A Markov Model (Ist order)

States: A,C,G,T Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ \leftarrow Ist order

A Markov Model (Ist order)

Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Begin/End states

Pr of emitting sequence x

x	=	$x_1 x_2 \ldots x_n$
P(x)	=	$P(x_1, x_2, \ldots, x_n) > \log^{n^5} o^{f p^{rov}}$
	=	$P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \dots, x_1)$
	=	$P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}) _{\text{if } \text{if } i$
	=	$P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}$
	=	$\prod_{i=0}^{n-1} a_{x_i,x_{i+1}}$ (with Begin state)

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

+	A	C	G	Т	-	A	С	G	Т
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	С	0.322	0.298*	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
Т	0.079	0.355	0.384	0.182	Т	0.177	0.239	0.292	0.292

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

S(x)	=	log	$g \frac{P(r)}{P(r)}$	x model x model	$\frac{(+)}{(-)} = \frac{1}{2}$	$\sum_{i=1}^{L} \log$	$s \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} =$	$\sum_{i=1}^L \beta_{x_{i-1}x_i}$
			β	A	С	G	т	
		-	A	-0.740	0.419	0.580	-0.803	
			С	-0.913	0.302	1.812	-0.685	
			G	-0.624	0.461	0.331	-0.730	
			Т	-1.169	0.573*	0.393	-0.679	

Figure 3.2 The histogram of the length-normalised scores for all the sequences. CpG islands are shown with dark grey and non-CpG with light grey.

What does a 2nd order Markov Model look like?

3rd order?

Questions

Q1: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

Combined Model

Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models (HMMs; Claude Shannon, 1948)

States: Paths: Transitions: Emissions: Observed data: Hidden data:

1, 2, 3, ... sequences of states $\pi = (\pi_1, \pi_2, ...)$ $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$ $e_k(b) = P(x_i = b \mid \pi_i = k)$

ved data: emission sequence n data: state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLFFFFFFFFFFFFLLLLLLLLLLLLFFFFLLLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFLLLLLLLLLFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLL

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path π & emission sequence *x*:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\begin{aligned} \pi^* &= \arg\max_{\pi} P(x,\pi) \\ \text{Sequence of most probable states} \\ \hat{\pi}_i &= \arg\max_k P(\pi_i = k \mid x) \end{aligned}$$

The Viterbi Algorithm: The most probable path

Viterbi finds: $\pi^* = \arg \max_{\pi} P(x, \pi)$

Possibly there are 1099 paths of prob 10-99

More commonly, one path (+ slight variants) dominate others.

(If not, other approaches may be preferable.)

Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient Note exponentially many paths

Viterbi

 $v_l(i) =$ probability of the most probable path emitting x_1, x_2, \dots, x_i and ending in state l

Initialize:

HMM Casino Example

(Excel spreadsheet on web; download & play...)

Viterbi Traceback

Above finds *probability* of best path To find the path itself, trace *backward* to the state k attaining the max at each stage

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLFFFFFFFFFFFFFLLLLLLLLLLLLFFFFLLLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFLLLLLLLLLFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLL

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Is Viterbi "best"?

Viterbi finds $\pi^* = \arg \max_{\pi} P(x, \pi)$

Most probable (Viterbi) *path* goes through 5, but most probable *state* at 2nd step is 6 (I.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

Viterbi: best path to each state

The Forward Algorithm

$$= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid x_1, \dots, x_i, \pi_i = k)$$

= $P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid \pi_i = k)$
= $f_k(i) \cdot b_k(i)$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

 $P(x, \pi_i = k)$

Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLFFFFLLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFLLLLLLLLLLFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLL

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step *i* ?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1 iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi: Found 46 of 48 plus 121 "false positives" Posterior Decoding:

same 2 false negatives plus 236 false positives

Post-process: 46/48 67 false pos

46/48 83 false pos

Post-process: merge within 500; discard < 500

Training

Given model topology & training sequences, learn transition and emission probabilities If π known, then MLE is just frequency observed in training data $a_{k,l} = \frac{\text{count of } k \rightarrow l \text{ transitions}}{\text{count of } k \rightarrow \text{ anywhere transitions}} \leftarrow e_k(b) = \dots$ If π hidden, then use EM: given π , estimate θ ; given θ estimate π . } 2 ways

Viterbi Training

given π , estimate θ ; given θ estimate π

Make initial estimates of parameters θ Find Viterbi path π for each training sequence Count transitions/emissions on those paths, getting new θ Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used. (Arguably good if you're doing Viterbi decoding.)

Baum-Welch Training

EM: given θ , estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)$$

$$= \frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_l(i+1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of $k \rightarrow l$ transitions $\hat{A}_{k,l}$

$$= \sum_{\text{training seqs } x^j} \sum_i P(\pi_i = k, \ \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar

HMM Summary

joint vs conditional probs

Viterbi – best single path Forward – sum over all paths

(max of products) (sum of products)

Backward – similar

Baum-Welch – training via EM and forward/ backward (aka the forward/backward algorithm)

Viterbi training - also "EM", but Viterbi-based

HMMs in Action: Pfam

Proteins fall into families, both across & within species

Ex: Globins, GPCRs, Zinc Fingers, Leucine zippers,... Identifying family very useful: suggests function, etc.

So, search & alignment are both important One very successful approach: profile HMMs

 Helix
 DDDDDDDEEEEEEEEEEEEEEEEE
 FFFFFFFFF

 HBA_HUMAN
 -DLS-----HGSAQUKGHCKKVADALTNAVAHV--D--DMPNALSALSDLHAHKL

 HBB_HUMAN
 GDLSTPDAVMGNPKVKAHCKKVLGAFSOLGAHL--D--NLKGTFATISELHCDKL

 MYG_PHYCA
 KHLKTEAEMKASEDLKKHCVTULTALGAILKK----K-GHHEAELKPLAQSHATKH

 GLB3_CHITP
 AG-KDLESIKGTAPFETHANRIVGPFSKIIGEL--P---NIEADVNTFVASHKPRG

 GLB5_PETMA
 RGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF

 LGB2_LUPLU
 LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVTDATLKNLGSVHVSKG

 GLB1_GLYDI
 SG---AS--DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN

 Consensus
 t
 v. v. Hg kv. a

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

- Mj: Match states (20 emission probabilities)
- Ij: Insert states (Background emission probabilities)
- Dj: Delete states (silent no emission)

Likelihood vs Odds Scores

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

Pfam Model Building

Hand-curated "seed" multiple alignments
Train profile HMM from seed alignment
Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences
7973 families in Rfam 18.0, 8/2005 (covers ~75% of proteins)

Model-building refinements

Pseudocounts (count = 0 common when training with 20 aa's)

 $e_i(a) = rac{C_{i,a} + A \cdot q_a}{\sum_a C_{i,a} + A}, \;\; A \sim 20, \; q_a = \; {
m background}$

(~50 training sequences)

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)

(~10-20 training sequences)

More refinements

- Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.
- Match/insert assignment: Simple threshold, e.g. "> 50% gap \Rightarrow insert", may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max *a posteriori* assignment.

Numerical Issues

Products of many probabilities → 0
For Viterbi: just add logs
For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation
Keep high precision and perhaps scale factor
Working with log-odds also helps.

Model structure

Define it as well as you can.

In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly – too many local optima

Duration Modeling

Self-loop duration: geometric pⁿ(1-p)

min, then geometric

"negative binomial"

Stem Cells & Cloning

Another Bio-Interlude

Caenorhabditis elegans

Nobel Prize 2002

Sydney Brenner (b 1927), established *C. elegans* as an experimental model organism

John Sulston (b 1942) mapped cell lineage in *C. elegans* development; showed that specific cells undergo programmed cell death as an integral part of the process.

Robert Horvitz (b 1947), discovered and characterized genes controlling cell death in *C*. *elegans*; corresponding genes exist in humans. http://nobelprize.org/nobel_prizes/medicine/laureates/2002/press.html

Cell Fate / Differentiation

Differentiation

Once a cell differentiates, how does it know to stay that way?

"Epigenetics"

Methylation is a large part of the story

Chromatin modification is another part

Chromatin

Differentiation

Once a cell differentiates, how does it know to stay that way?

Methylation is a large part of the story

Chromatin modification is another part

Positive autoregulation of genes is another

TF A turns self on (+ others) maintaining A identity

Consequences:

Can't regrow body parts (but salamanders can...) Can't clone (easily)

Stem Cells

Reservoirs of partially undifferentiated cells in many tissues in the body
Replenish/replace dead/damaged cells
Huge therapeutic potential
Best source? Embryonic tissue

⇒ ethical issues

What about cell cultures

⇒ many are basically tumors

Cloning

Need to "undo" all the epigenetic marking added during differentiation, quench the feedback markers, etc. Dolly the sheep

OCT 3/4 (Octamer binding transcription factor 3/4)

Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3'). Forms a trimeric complex with SOX2 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency.

http://www.uniprot.org/uniprot/Q01860

SOX2 (SRY-related high-mobility-group (HMG)-box protein 2)

Transcription factor that forms a trimeric complex with OCT4 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency

http://www.uniprot.org/uniprot/P48431

Klf4 (kruppel-like factor 4)

_____ kruppel

Zinc-finger transcription factor. Contains 3 C2H2-type zinc fingers. May act as a transcriptional activator. Binds the CACCC core sequence. May be involved in the differentiation of epithelial cells and may also function in the development of the skeleton and kidney.

http://www.uniprot.org/uniprot/O43474

MYC (Myc proto-oncogene)

Basic helix-loop-helix transcription factor. Binds DNA both in a non-specific manner and also specifically recognizes the core sequence 5'-CAC[GA]TG-3'. Seems to activate the transcription of growth-related genes. Efficient DNA binding requires dimerization with another bHLH protein. Binds DNA as a heterodimer with MAX. Interacts with TAFIC, SPAG9, PARP10, JARID1A and JARID1B.

http://www.uniprot.org/uniprot/P01106

Stem Cells Again

Great recent progress in making equiv of embryonic stem cells from adult tissues

Takahashi & Yamanaka, Cell, 2006

Key? Transfect genes for those 4 transcription factors!

lssues

Myc is a proto-oncogene Long term stability of derived cells with unnatural expression of these genes is unclear Delivery: Retro virus

may do damage during integration

Recent Progress

2007: Some other gene combinations work, without Myc

2008: Can use adenoviruses

E.g., Stadtfeld, Nagaya, Utikal, Weir, Hochedlinger, Science, Sept 2008.

otherwise normal, but mosaic of "induced pluripotent stem cells" & normal cells, grown from embryonic fusion

Stadtfeld, et al., 2008

Ditto in brain section Stadtfeld, et al., 2008