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1966 Albert Lasker Award for Basic Medical Research

1974 Nobel Prize in Physiology or Medicine (with Albert Claude and Christian de Duve)

Identified the function of mitochondria, ribosomes and cellular secretion



Outline

Last week: Learning from data:
- MLE: Max Likelihood Estimators
- EM: Expectation Maximization (MLE w/hidden data)

Expression & regulation
- Expression: creation of gene products
- Regulation: when/where/how much of each gene 

product; complex and critical
Next: using MLE/EM to find regulatory motifs in 
biological sequence data



Gene Expression & 
Regulation



Gene Expression

Recall a gene is a DNA sequence for a protein 
To say a gene is expressed means that it

is transcribed from DNA to RNA
the mRNA is processed in various ways
is exported from the nucleus (eukaryotes)
is translated into protein

A key point: not all genes are expressed all the 
time, in all cells, or at equal levels



Alberts, et al.

RNA 
Transcription
Some genes heavily transcribed 

(many are not)



Regulation
In most cells, pro- or eukaryote, easily a 10,000-fold 
difference between least- and most-highly expressed 
genes
Regulation happens at all steps.  E.g., some transcripts 
can be sequestered then released, or rapidly 
degraded, some are weakly translated, some are very 
actively translated, some are highly transcribed, some 
are not transcribed at all
Below, focus on 1st step only: 
transcriptional regulation



 E. coli growth
on  glucose + lactose

http://en.wikipedia.org/wiki/Lac_operon





1965 Nobel Prize

François Jacob and Jacques Monod



DNA Binding Proteins

A variety of DNA binding proteins 
(“transcription factors”;  a significant fraction, 
perhaps 5-10%, of all human proteins) 
modulate transcription of protein coding 
genes



The Double Helix

Los Alamos Science



In the 
groove

Different 
patterns of 
potential H 
bonds at 
edges of 
different 
base pairs, 
accessible 
esp. in 
major 
groove



Helix-Turn-Helix DNA Binding Motif



H-T-H Dimers

Bind 2 DNA patches, ~ 1 turn apart
Increases both specificity and affinity



Zinc Finger Motif



Leucine Zipper Motif

Homo-/hetero-dimers 
and combinatorial 

control

Alberts, et al.



Some Protein/DNA 
interactions well-understood 



But the overall DNA binding 
“code” still defies prediction

CAP





Bacterial Met Repressor

SAM (Met 
derivative)

Negative feedback loop: 
high Met level ⇒ repress Met synthesis genes

(a beta-sheet DNA binding domain)



16!

Summary!

Proteins can bind DNA to regulate gene 
expression (i.e., production of other 
proteins & themselves)!

This is widespread !

Complex combinatorial control is possible!

But it’s not the only way to do this...!



Sequence Motifs
Motif:  “a recurring salient thematic element”

Last few slides described structural motifs in 
proteins

Equally interesting are the DNA sequence 
motifs to which these proteins bind - e.g. , 
one leucine zipper dimer might bind (with 
varying affinities) to dozens or hundreds of 
similar sequences



DNA binding site 
summary

Complex “code”

Short patches (4-8 bp)

Often near each other (1 turn = 10 bp)

Often reverse-complements

Not perfect matches



E. coli Promoters
“TATA Box”  ~ 10bp upstream of 
transcription start
How to define it?

Consensus is TATAAT
BUT all differ from it
Allow k mismatches?
Equally weighted?
Wildcards like R,Y?  ({A,G}, {C,T}, resp.)

TACGAT
TAAAAT
TATACT
GATAAT
TATGAT
TATGTT



E. coli Promoters
“TATA Box” - consensus TATAAT 
   ~10bp upstream of transcription start
Not exact: of 168 studied (mid 80’s)
– nearly all had 2/3 of TAxyzT
– 80-90% had all 3
– 50% agreed in each of x,y,z
– no perfect match
Other common features at -35, etc.



TATA Box Frequencies

pos
base       1 2 3 4 5 6

A 2 95 26 59 51 1

C 9 2 14 13 20 3

G 10 1 16 15 13 0

T 79 3 44 13 17 96



TATA Scores
pos

base       1 2 3 4 5 6

A -36 19 1 12 10 -46

C -15 -36 -8 -9 -3 -31

G -13 -46 -6 -7 -9 -46(?)

T 17 -31 8 -9 -6 19



Scanning for TATA

Stormo, Ann. Rev. Biophys.  Biophys Chem, 17, 1988, 241-263

A
C
G
T

A
C
G
T

A
C
G
T

A           C           T            A           T            A           A           T           C           G

A           C           T            A           T            A           A           T           C           G

A           C           T            A           T            A           A           T           C           G



Scanning for TATA
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Score Distribution 
(Simulated)
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Weight Matrices: 
Statistics

Assume:

fb,i= frequency of base b in position i in TATA

fb = frequency of base b in all sequences

Log likelihood ratio, given S = B1B2...B6:
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Neyman-Pearson

Given a sample x1, x2, ..., xn, from a distribution 
f(...|Θ) with parameter Θ, want to test 
hypothesis Θ = θ1 vs Θ = θ2.

Might as well look at likelihood ratio:

    f(x1, x2, ..., xn|θ1) 

    f(x1, x2, ..., xn|θ2)
>  τ



Score Distribution 
(Simulated)
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What’s best WMM?

Given, say, 168 sequences s1, s2, ..., sk of length 
6, assumed to be generated at random 
according to a WMM defined by 6 x (4-1) 
parameters θ, what’s the best θ?

E.g., what’s MLE for θ given data s1, s2, ..., sk?

Answer: like coin flips or dice rolls, count 
frequencies per position (see HW).



Weight Matrices: 
Chemistry

Experiments show ~80% correlation of log 
likelihood weight matrix scores to measured 
binding energy of RNA polymerase to 
variations on TATAAT consensus
[Stormo & Fields]



ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.250 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2.00
T -1.00 2.00 -∞

Another WMM example

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:



• E. coli - DNA approximately 25%  A, C, G, T

• M. jannaschi - 68% A-T,  32% G-C

LLR from previous 
example, assuming

e.g., G in col 3 is 8 x more likely via WMM 
than background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1.00 -∞ 3.00
T -1.58 1.42 -∞

Non-uniform Background

fA = fT = 3/8
fC = fG = 1/8



AKA Kullback-Liebler Distance/Divergence, 
AKA Information Content

Given distributions P, Q

Notes: 
   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]

≥ 0



WMM: How “Informative”?
Mean score of site vs bkg?
For any fixed length sequence x, let
P(x)  = Prob. of x according to WMM
Q(x) = Prob. of x according to background

Relative Entropy:

H(P||Q) is expected log likelihood score of a  
sequence randomly chosen from WMM; 
-H(Q||P) is expected score of Background

H(P ||Q) =
∑

x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)



WMM Scores vs 
Relative Entropy
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For WMM, you can show (based on the 
assumption of independence between 
columns), that :

where Pi and Qi are the WMM/background 

distributions for column i.

H(P ||Q) =
∑

i H(Pi||Qi)



Freq.  Col 1 Col 2 Col 3
A 0.625 0 0
C 0 0 0
G 0.250 0 1
T 0.125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2.00
T -1.00 2.00 -∞

RelEnt 0.70 2.00 2.00 4.70

LLR  Col 1 Col 2 Col 3
A 0.74 -∞ -∞
C -∞ -∞ -∞
G 1.00 -∞ 3.00
T -1.58 1.42 -∞

RelEnt 0.51 1.42 3.00 4.93

WMM Example, cont.

Uniform Non-uniform



Pseudocounts

Are the -∞’s a problem?
Certain that a given residue never occurs 
in a given position?  Then -∞ just right

Else, it may be a small-sample artifact

Typical fix: add a pseudocount to each observed 
count—small constant (e.g., .5, 1) 

Sounds ad hoc; there is a Bayesian justification



WMM Summary

Weight Matrix Model (aka Position Specific Scoring Matrix, 
PSSM, “possum”, 0th order Markov models)

Simple statistical model assuming independence between 
adjacent positions

To build: count (+ pseudocount) letter frequency per 
position, log likelihood ratio to background

To scan: add LLRs per position, compare to threshold
Generalizations to higher order models (i.e., letter 

frequency per position, conditional on neighbor) also 
possible, with enough training data



How-to Questions

Given aligned motif instances, build model?
Frequency counts (above, maybe w/ pseudocounts)

Given a model, find (probable) instances
Scanning, as above

Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions of co-
expressed genes)

Hard ... rest of lecture.



Motif Discovery

Unfortunately, finding a site of max relative 
entropy in a set of unaligned sequences is NP-
hard [Akutsu]



Motif Discovery: 
4 example approaches
Brute Force

Greedy search

Expectation Maximization

Gibbs sampler



Brute Force
Input:

Motif length L, plus sequences s1, s2, ..., sk (all of 
length n+L-1, say), each with one instance of an 
unknown motif

Algorithm:
Build all k-tuples of length L subsequences, one 
from each of s1, s2, ..., sk (nk such tuples)
Compute relative entropy of each
Pick best



Brute Force, II

Input:
Motif length L, plus seqs s

1
, s

2
, ..., s

k
 (all of length n+L-1, say), 

each with one instance of an unknown motif
Algorithm in more detail:

Build singletons: each len L subseq of each s
1
, s

2
, ..., s

k 
(nk sets)

Extend to pairs: len L subseqs of each pair of seqs (n2(  ) sets)

Then triples:  len L subseqs of each triple of seqs (n3(  ) sets)

Repeat until all have k sequences (nk(  ) sets)

Compute relative entropy of each; pick best

pr
ob

le
m

: 
as

tr
on

om
ic

al
ly

 s
lo

oo
ow

k
2

k
3

k
k



Greedy Best-First
[Hertz & Stormo]

Input:
Sequences s1, s2, ..., sk; motif length L; 
“breadth” d, say d = 1000

Algorithm:
As in brute, but discard all but best d 
relative entropies at each stage
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Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):
Sequence s1, s2, ..., sk; motif length l; background 
model; again assume one instance per sequence 
(variants possible)

Algorithm: EM
Visible data: the sequences
Hidden data: where’s the motif

Parameters θ: The WMM



MEME Outline

Typical EM algorithm:

Parameters θt at tth iteration,  used to estimate 
where the motif instances are (the hidden variables)

Use those estimates to re-estimate the parameters θ 
to maximize likelihood of observed data, giving θt+1

Repeat

Key: given a few good matches to best motif, 
expect to pick out more



Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Baye
s

Expectation Step
(where are the motif instances?)

1 3 5 7 9 11 ...

Sequence i

Ŷi,j}∑=1



Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step
(what is the motif?)

Find θ maximizing expected value:



Exercise: Show this is 
maximized by “counting” 
letter frequencies over all 
possible motif instances, 
with counts weighted 
by      , again the 
“obvious” thing.

M-Step (cont.)
Q(θ | θt) =

∑k
i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Ŷi,j

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC



Initialization

1. Try every motif-length substring, and use as 
initial θ a WMM with, say 80% of weight on 
that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps)



The Gibbs Sampler

Lawrence, et al.  “Detecting Subtle Sequence Signals:  A 
Gibbs Sampling Strategy for Multiple Sequence 

Alignment,” Science 1993

Another Motif 
Discovery Approach







Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller, & 
Teller, “Equations of State Calculations by Fast 
Computing Machines,” J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903,  American 
physicist, a pioneer of thermodynamics

Some History



An old problem: 
n random variables:
Joint distribution (p.d.f.): 
Some function:     
Want Expected Value:

x1, x2, . . . , xk

P (x1, x2, . . . , xk)

E(f(x1, x2, . . . , xk))
f(x1, x2, . . . , xk)

How to Average



Approach 1: direct integration 
   (rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration 
   (often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration
    sample                                   and average:

E(f(x1, x2, . . . , xk)) =∫

x1

∫

x2

· · ·
∫

xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 . . . dxk

E(f(!x)) ≈ 1
n

∑n
i=1 f(!x(i))

!x(1), !x(2), . . . !x(n) ∼ P (!x)

How to Average



• Independent sampling also often hard, but not 
required for expectation

• MCMC                                 w/ stationary dist = P

• Simplest & most common: Gibbs Sampling

• Algorithm
for t = 1 to ∞
   for i = 1 to k do : 

P (xi | x1, x2, . . . , xi−1, xi+1, . . . , xk)

xt+1,i ∼ P (xt+1,i | xt+1,1, xt+1,2, . . . , xt+1,i−1, xt,i+1, . . . , xt,k)

t+1    t

!Xt+1 ∼ P ( !Xt+1 | !Xt)

Markov Chain Monte 
Carlo (MCMC)



1 3 5 7 9 11 ...

Sequence i

Ŷi,j



Input: again assume sequences s1, s2, ..., sk 

with one length w motif per sequence

Motif model:  WMM

Parameters:  Where are the motifs?
for 1 ≤ i ≤ k, have 1 ≤ xi ≤ |si|-w+1
“Full conditional”:  to calc

build WMM from motifs in all sequences 
except i, then calc prob that motif in ith seq 
occurs at j by usual “scanning” alg. 

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)



Randomly initialize xi’s

for t = 1 to ∞
   for i = 1 to k 
      discard motif instance from si; 

      recalc WMM from rest
      for j = 1 ... |si|-w+1

         calculate prob that ith motif is at j:

         pick new xi according to that distribution 

Similar to 
MEME, but it 
would 
average over, 
rather than 
sample from

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)

Overall Gibbs Alg



Burnin - how long must we run the chain to 
reach stationarity?

Mixing - how long a post-burnin sample must 
we take to get a good sample of the 
stationary distribution?  (Recall that individual 
samples are not independent, and may not 
“move” freely through the sample space.  
Also, many isolated modes.)

Issues



“Phase Shift” - may settle on suboptimal 
solution that overlaps part of motif. 
Periodically try moving all motif instances a 
few spaces left or right.

Algorithmic adjustment of pattern width:
Periodically add/remove flanking positions to 
maximize (roughly) average relative entropy 
per position

Multiple patterns per string

Variants & Extensions









13 tools

Real ‘motifs’ (Transfac)

56 data sets (human, mouse, fly, yeast)

‘Real’, ‘generic’, ‘Markov’

Expert users, top prediction only

Methodology



*     *     $    *     ^     ^     ^         *                    
*

$ Greed
* Gibbs
^ EM





Lessons
Evaluation is hard (esp. when “truth” is unknown)

Accuracy low

partly reflects limitations in evaluation 
methodology (e.g. ≤ 1 prediction per data set; 
results better in synth data)

partly reflects difficult task, limited knowledge (e.g. 
yeast > others)

No clear winner re methods or models



Motif Discovery 
Summary

Important problem: a key to understanding gene regulation

Hard problem: short, degenerate signals amidst much noise

Many variants have been tried, for representation, search, 
and discovery.  We looked at only a few:

Weight matrix models for representation & search

Greedy, MEME and Gibbs for discovery

Still much room for improvement.  Comparative genomics, 
i.e. cross-species comparison is very promising


