Human Perception of Video

- 30 frames per second seems to allow the visual system to integrate the discrete frames into continuous perception. Even 10 frames per second is acceptable.
- If distorted, nearby frames in the same scene should have only small details wrong.
 - A difference in average intensity is noticeable
- Compression choice when reducing bit rate
 - skipped frames cause stop action
 - lower fidelity frames may be better

Applications of Digital Video

- Teleconference or video phone
 - Real-time video
 - Very low delay (1/10 second is a standard)
- Live Broadcast Video
 - Modest delay is tolerable (seconds is normal)
 - Error tolerance is needed.
- Video-in-a-can (DVD, Video-on-Demand)
 - Random access to compressed data is desired
 - Encoding can take a lot of time
- Decoding must always be at least the frame rate.

Video Encoding

- Frame-by-frame coding
 - Video frames
 - Encoder
 - Decoding each frame requires the previous frame
- Group-of-frames coding
 - Video frames
 - Encoder
 - Coded groups of frames no interdependencies

Coding Techniques

- Frame-by-frame coding with prediction
 - Very low bit rates
 - Low delay
 - Not error resilient
- Group-of-frames coding
 - Higher bit rates – within a group prediction is used
 - Error resilient
 - Random Access
 - Higher delay

Digital Video Data

- CCIR 601 (4:2:2 scheme)
 - 13.5 MHz sample rate for luminance channel
 - 6.75 MHz sample rate for each of two chrominance channels
 - 8 bits per sample is a bit rate of 27 x 8 = 216 Mb per second
 - MPEG-SIF – ½ sample rate for luminance and ¼ for chrominance = 81 Mb per second
- CIF (Common Interchange Format)
 - 288 x 352 pixels per frame for luminance channel
 - 144 x 176 pixels per frame for each of two chrominance
 - 8 bits per pixel and 30 frames per second gives 48.7 Mb per second
 - QCIF (Quarter - CIF) is ¼ the data or 12.2 Mb per second.
High Compression Ratios Possible

- Nearby frames are highly correlated. Use the previous frame to predict the current one.
- Need to take advantage of the fact that usually objects move very little in 1/30 th of a second.
 - Video coders use motion compensation as part of prediction

Motion Compensation

Block Based Motion Compensation

Motion Vectors

Motion Compensation

- For each motion compensation block
 - Find the block in the previous decoded frame that gives the least distortion.
 - If the distortion is too high then code the block independently. (intra block)
 - Otherwise code the difference (inter block)
- The previous decoded frame is used because both the encoder and decoder have access to it.
Issues

• Distortion measured in squared error or absolute error
 – Absolute error is quicker to calculate
• Block size
 – Too small then too many motion vectors
 – Too large then there may be no good match
• Searching range to find best block
 – Too large a search range is time consuming
 – Too small then may be better matches
 – Prediction can help.
• Prediction resolution
 – Full pixel, half pixel, quarter pixel resolution
 – Higher resolution takes longer, but better prediction results

Fractional Motion Compensation

• Half or quarter pixel motion compensation may achieve better predictions.
• Fractional motion compensation is achieved by linear interpolation.

Linear Interpolation

• Calculate an interpolated pixel as the average of overlapping pixels.
• Better interpolation methods exist.

Half

\[a = \frac{a_1}{4} + \frac{a_2}{4} + \frac{a_3}{4} + \frac{a_4}{4} \]

Quarter

\[a = \frac{3a_1}{16} + \frac{9a_2}{16} + \frac{a_3}{16} + \frac{3a_4}{16} \]

Rate Control

• Buffer is filled at a constant rate (almost).
• Buffer is emptied at a variable rate.

Underflow Problem

• Set up
 – Constant rate channel at C bits per second
 – Frame rate F in frames per second.
 – \(b_i \) is the number of bits in compressed frame \(i \)
 – Initial occupancy of buffer \(B \)
• \(B_i \) is the number of bits in the buffer at frame \(i \)
 \(B_i = B \)
 \(B_{i+1} = B_i + C/F - b_i \)
• Buffer should never empty \(B_i \geq 0 \) for all \(i \)

Example

\[\frac{C}{F} = 60 \]

Initial

Decoder

60 bits not yet arrived

Buffer

60 bits that arrived

Decoder
Rate Control

- The rate control buffer is seeded to allow for variability in number of bits per frame and variability in channel rate.
- Causes of variability in bits per frame:
 - Encoder does not predict well how many bits will be used in a frame - scalar quantization.
 - Encoder allocates more bits in frames that are hard to encode because they are not predicted well - scene changes.
- Causes of channel rate variability
 - Congestion on the internet

Rate Control Algorithms

- On-line solution
 - Send a few frames to seed the buffer
 - Encoder simulates the buffer, should the buffer threaten to empty start sending more frames at lower fidelity or skip frames (decoder will interpolate skipped frames).
- Off-line solution
 - Attempt to allocate bits to frames to assure even fidelity.
 - Seed the buffer with enough frames to prevent underflow.

H.261

- Application – low bit rate streaming video
- Frame-by-frame encoder
- DCT based with 8x8 coding block
 - Uses JPEG style coding
- Motion compensation based on 16x16 macroblocks.
- Half pixel motion compensation
H.261

- Within a group of blocks (GOB) prediction is used with motion vectors for coding.

Also called a slice

H.261 Organization

P-Frame

Intra-Macroblock Distribution

MPEG-1

- Application – Video coding for random access
- Group-of-frames encoder
- DCT based with 8x8 coding block
 - Uses JPEG style coding
- Motion compensation based on 16x16 macroblocks.
- Forward and Backward Prediction within a group of frames

MPEG-1
Orders

Display Order

```
10  9  8  7  6  5  4  3  2  1
```

Coding/Decoding Order

```
9  8  10  6  5  7  3  2  4  1
```

Added delay is one frame time

MPEG-1 Notes

- Random access unit = Group-of-Frames
 - Called GOP for group-of-pictures
- Error resilient
 - B-frames can be damaged without propagation
- Added delay
 - Coding order different than display order
- Encoding time consuming
 - Suitable for non-interactive applications

Beyond MPEG-1

- MPEG-2
 - Application independent standard
- MPEG-4
 - Multimedia applications
 - Model based coding
- H.263
 - More error resilience

Newest Trends

- H.264
 - Just out in 2003, many new features
 - Quarter pixel motion compensation
 - Variable size motion blocks
 - Multiple frame prediction
- 3-D Wavelet Coding
 - Third dimension is time
 - 3-D SPIHT has been implemented
 - Delay is large because GOP is large
- GTV
 - Group testing for video
 - Bits per frame can be controlled enabling off-line rate control to succeed.