CSEP 590
Data Compression
Autumn 2007

EBCOT
JPEG 2000

History

- Embedded Block Coding with Optimized Truncation (EBCOT)
 - Taubman – journal paper 2000
 - Algorithm goes back to 1998 or maybe earlier
 - Basis of JPEG 2000

- Embedded
 - Prefixes of the encoded bit stream are legal encodings at lower fidelity, like SPIHT and GTW

- Block coding
 - Entropy coding of blocks of bit planes, not block transform coding like JPEG.

Features at a High Level

- **SNR scalability** (Signal to Noise Ratio)
 - Embedded code - The compressed bit stream can be truncated to yield a smaller compressed image at lower fidelity.
 - Layered code – The bit stream can be partitioned into a base layer and enhancement layers. Each enhancement layer improves the fidelity of the image.

- **Resolution scalability**
 - The lowest subband can be transmitted first yielding a smaller image at high fidelity.
 - Successive subbands can be transmitted to yield larger and larger images.

Block Diagram of Encoder

- *Wavelet transform*
- *Partition into coding blocks*
- *Wavelet transformed image*
- *Bit-plane code each block independently*
- *Create layers*
- *Layer 1, Layer 2, Layer 3*
Resolution Ordering

Partition into coding blocks

Block Coding

• Assume we are in block k, and c(i,j) is a coefficient in block k.
• Divide c(i,j) into its sign s(i,j) and m(i,j) its magnitude.
• Quantize to \(v(i,j) = \left\lfloor \frac{m(i,j)}{q_k} + 0.5 \right\rfloor \) where \(q_k \) is the quantization step for block k.
• Example: \(c(i,j) = -10, q_k = 3.\)
 - \(s(i,j) = 0 \)
 - \(v(i,j) = \text{floor}(-10/3 + 0.5) = -2 \)

Bit Planes of Normalized Quantized Coefficients

Bit-Plane Coding of Blocks

• Sub-block significance coding (like group testing)
 – Some sub-blocks are declared insignificant
 – Significant sub-blocks must be coded
• Contexts are defined based on the previous bit-plane significance.
 – Zero coding (ZC) – 9 contexts
 – Run length coding (RLC) – 1 context
 – Sign coding (SC) – 5 contexts
 – Magnitude refinement coding (MR) – 3 contexts
• Block coded in raster order using arithmetic coding

Sub-Block Significance Coding

• Quad-tree organized group testing
• Block divided into 16x16 sub-blocks
• Identify in few bits the sub-blocks that are significant

Quad-Tree Subdivision
Quad-Tree Subdivision

Quad-Tree Subdivision Coding

ZC – Zero Coding

ZC Contexts

Examples
RLC – Run Length Coding

- Looks for runs of 4 that are likely to be insignificant
- If all insignificant then code as a single symbol
- Main purpose – to lighten the load on the arithmetic coder.

SC – Sign Coding

\[
hs = \begin{cases}
0 & \text{if horizontal neighbors are both insignificant or of opposite sign} \\
1 & \text{if at least one horizontal neighbor is positive} \\
-1 & \text{if at least one horizontal neighbor is negative}
\end{cases}
\]

\[
vs = \begin{cases}
0 & \text{if vertical neighbors are both insignificant or of opposite sign} \\
1 & \text{if at least one vertical neighbor is positive} \\
-1 & \text{if at least one vertical neighbor is negative}
\end{cases}
\]

MR – Magnitude Refinement

- This is the refinement pass.
- Define \(t = 0 \) if first refinement bit, \(t = 1 \) otherwise.

<table>
<thead>
<tr>
<th>label</th>
<th>(t)</th>
<th>(h + v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>> 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>*</td>
</tr>
</tbody>
</table>

Bit Allocation

- How do we truncate the encoded blocks to achieve a desired bit rate and get maximum fidelity

\[
D = \sum_k w_k \sum_{i,j} (c_k(i,j) - c(i,j))^2
\]

where \(w_k \) is the “weight” of the basis vectors for block \(k \) and \(c_k(i,j) \) is the recovered coefficients from \(n_k \) bits of block \(k \).

Basic Set Up

- Encoded block \(k \) can be truncated to \(n_k \) bits.
- Total Bit Rate \(\sum n_k \)
- Distortion attributable to block \(k \) is

\[
D_k = \sum_{i,j} (c_k(i,j) - c(i,j))^2
\]

where \(w_k \) is the “weight” of the basis vectors for block \(k \) and \(c(i,j) \) is the recovered coefficients from \(n_k \) bits of block \(k \).
Facts about Bit Allocation

- It is an NP-hard problem generally
- There are fast approximate algorithms that work well in practice
 - GBFOS
 - Lagrange multiplier method
 - Multiple choice knapsack method

Rate-Distortion Curve

- Rate
- Distortion
- a, b, c, d, e, f, g, h
- Rate-distortion curve
- Truncation points
- Encoded block

Picture of Bit Allocation

- Block 1
- Block 2
- Block m

Pick one point from each curve so that the sum of the x values is bounded by R and the sum of the y values is minimized.

Good approximate algorithms exist because the curves are almost convex.

Notes on EBCOT

- EBCOT is quite complicated with many features.
- JPEG 2000 based on EBCOT but differs to improve compression and decompression time.
- EBCOT has
 - Resolution scalability
 - SNR scalability
 - Quantization
 - Bit allocation
 - Arithmetic coding with context and adaptivity
 - Group testing (quad trees)
 - Sign and refinement bit contexts
 - Lots of engineering

Notes on Wavelet Compression

- Wavelets appear to be excellent for image compression
 - No blocking artifacts
 - Wavelet coding techniques abound and are very effective
- Some of the wavelet coding techniques can apply to block transforms.
- Newest generation of image compressor use wavelets, JPEG 2000.