1. Consider the probability distribution \(a : 1/4, b : 1/2, c : 1/4 \).

 (a) Use arithmetic coding with scaling to code the string \(bbbba \). Show the steps in the process and the value of \(C \) which keeps track of the number of complementary bits to be output after a 0 or 1 is output. I chose this example because the scaled interval are very easy to calculate.

 (b) Use arithmetic decoding with scaling to decode 00000000001 (10 zeros followed by a 1) assuming the string decoded is of length 6.

2. Let us try LZW on a special class of inputs too. Again assume the two symbol alphabet \(\{a, b\} \). Consider the following strategy for encoding the dictionary symbols from LZW. Start with a dictionary of size 2 and use just one bit to transmit a symbol. When the dictionary fills up we double its size to 4 and use two bits to transmit a word in the dictionary. This doubling happens when ever the dictionary fills.

 (a) Encode \(a^6 \) and \(a^{28} \) with this version of LZW.

 (b) Compute the length, as a function of \(n \), of the encoding of \(a^n \) with this version of LZW. (You may restrict yourself to easy \(n \)'s to work with if that helps.)

 (c) Encode \(a^6 \) and \(a^{28} \) using the \(\gamma \)-code to represent the dictionary symbols from LZW on the strings \(a^6 \) and \(a^{28} \).

 (d) Compute the length, as a function of \(n \), of the encoding of \(a^n \) using the \(\gamma \)-code to represent the dictionary symbols of LZW. (You may restrict yourself to easy \(n \)'s to work with if that helps.)