CSEP 590 A Lecture 6 Markov Models and Hidden Markov Models

DNA Methylation

- CpG 2 adjacent nts, same strand (not Watson-Crick pair; "p" mnemonic for the phosphodiester bond of the DNA backbone)
- CH₃ NH₂ N N H
- C of CpG is often (70-80%) methylated in mammals i.e., CH3 group added (both strands)

cytosine

- Why? Generally silences transcription. X-inactivation, imprinting, repression of mobile elements, some cancers, aging, and developmental differentiation
- How? DNA methyltransferases convert hemi- to fullymethylated
- Major exception: promoters of housekeeping genes

"CpG Islands"

Methyl-C mutates to T relatively easily

Net: CpG is less common than expected genome-wide: f(CpG) < f(C)*f(G)

BUT in promoter (& other) regions, CpG remain unmethylated, so CpG → TpG less likely there: makes "CpG Islands"; often mark gene-rich regions

cytosine

thymine

CpG Islands

CpG Islands

More CpG than elsewhere

More C & G than elsewhere, too

Typical length: few 100 to few 1000 bp

Questions

Is a short sequence (say, 200 bp) a CpG island or not? Given long sequence (say, 10-100kb), find CpG islands?

Markov & Hidden Markov Models

References:

Durbin, Eddy, Krogh and Mitchison, "Biological Sequence Analysis", Cambridge, 1998

Rabiner, "A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition," Proceedings of the IEEE, v 77 #2,Feb 1989, 257-286

Independence

A key issue: All models we've talked about so far assume *independence* of nucleotides in different positions - definitely unrealistic.

Markov Chains

A sequence x_1, x_2, \ldots of random variables is a *k-th order Markov chain* if, for all *i*, *i*th value is independent of all but the previous *k* values:

$$P(x_i \mid x_1, x_2, \dots, x_{i-1}) = P(x_i \mid x_{i-k}, x_{i-k+1}, \dots, x_{i-1})$$

Example I: Uniform random ACGT
Example 2: Weight matrix model
Example 3: ACGT, but ↓ Pr(G following C)

A Markov Model (Ist order)

States: A,C,G,T Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Ist order

A Markov Model (Ist order)

States: A,C,G,T Emissions: corresponding letter Transitions: $a_{st} = P(x_i = t | x_{i-1} = s)$ Begin/End states

Pr of emitting sequence x

 $x = x_1 x_2 \ldots x_n$

 $P(x) = P(x_1, x_2, \dots, x_n)$

- $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1}, \dots, x_1)$
- $= P(x_1) \cdot P(x_2 \mid x_1) \cdots P(x_n \mid x_{n-1})$
- $= P(x_1) \prod_{i=1}^{n-1} a_{x_i, x_{i+1}}$
- $= \prod_{i=0}^{n-1} a_{x_i,x_{i+1}}$ (with Begin state)

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences

E.g., from 48 CpG islands in 60k bp:

+	A	С	G	Т	-	А	С	G	Т
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	С	0.322	0.298*	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
Т	0.079	0.355	0.384	0.182	Т	0.177	0.239	0.292	0.292

Discrimination/Classification

Log likelihood ratio of CpG model vs background model

$$S(x) = \log \frac{P(x | \text{model} +)}{P(x | \text{model} -)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

β	A	С	G	Т
А	-0.740	0.419	0.580	-0.803
С	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573*	0.393	-0.679

CpG Island Scores

Figure 3.2 The histogram of the length-normalised scores for all the sequences. CpG islands are shown with dark grey and non-CpG with light grey.

Aside: Ist Order "WMM"

Questions

QI: Given a *short* sequence, is it more likely from feature model or background model? Above

Q2: Given a *long* sequence, where are the features in it (if any)

Approach I: score 100 bp (e.g.) windows

Pro: simple

Con: arbitrary, fixed length, inflexible

Approach 2: combine +/- models.

Combined Model

Emphasis is "Which (hidden) state?" not "Which model?"

Hidden Markov Models (HMMs)

States: Paths: Transitions: Emissions:

Observed data: Hidden data: 1, 2, 3, ... sequences of states $\pi = (\pi_1, \pi_2, ...)$ $a_{k,l} = P(\pi_i = l \mid \pi_{i-1} = k)$ $e_k(b) = P(x_i = b \mid \pi_i = k)$

emission sequence state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLLFFFFFFFFFFFFFFLLLLLLLLLLLLLFFFFFLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path π & emission sequence *x*:

$$P(x,\pi) = a_{0,\pi_1} \prod_{i=1}^n e_{\pi_i}(x_i) \cdot a_{\pi_i,\pi_{i+1}}$$

But π is hidden; what to do? Some alternatives:

Most probable single path

$$\pi^* = \arg \max_{\pi} P(x, \pi)$$

Sequence of most probable states
$$\hat{\pi}_i = \arg \max_k P(\pi_i = k \mid x)$$

The Viterbi Algorithm: The most probable path

Viterbi finds:
$$\pi^* = \arg \max_{\pi} P(x, \pi)$$

Possibly there are 10⁹⁹ paths of prob 10⁻⁹⁹

More commonly, one path dominates others. (If not, other approaches may be preferable.) Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient

Note exponentially many paths

Viterbi

 $v_l(i) =$ probability of the most probable path emitting x_1, x_2, \ldots, x_i and ending in state l

Initialize:

Viterbi Traceback

Above finds probability of best path

To find the path itself, trace *backward* to the state *k* attaining the max at each stage

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLLFFFFFFFFFFFFFFLLLLLLLLLLLLLFFFFFLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Is Viterbi "best"?

Most probable (Viterbi) path goes through 5, but most probable state at 2nd step is 6 (I.e., Viterbi is not the only interesting answer.)

An HMM (unrolled)

Emissions/sequence positions

Viterbi: best path to each state

 $v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$

The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

In state k at step i? $P(x, \pi_i = k)$ $= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid x_1, \dots, x_i, \pi_i = k)$ $= P(x_1, \dots, x_i, \pi_i = k) \cdot P(x_{i+1}, \dots, x_n \mid \pi_i = k)$ $= f_k(i) \cdot b_k(i)$

$$P(\pi_i = k \mid x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

Posterior Decoding, I

Alternative 1: what's the most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLLFFFFFFFFFFFFFFLLLLLLLLLLLLLFFFFFLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Posterior Decoding

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i?

$$\hat{\pi}_i = \arg\max_k P(\pi_i = k \mid x)$$

Alternative 2: given some function g(k) on states, what's its expectation. E.g., what's probability of "+" model in CpG HMM (g(k)=1 iff k is "+" state)?

$$G(i \mid x) = \sum_{k} P(\pi_i = k \mid x) \cdot g(k)$$

CpG Islands again

Data: 41 human sequences, totaling 60kbp, including 48 CpG islands of about 1kbp each

Viterbi:

Post-process:

Found 46 of 4846/48plus 121 "false positives"67 false pos

Posterior Decoding:

same 2 false negatives plus 236 false positives

46/48 83 false pos (merge within 500; discard < 500)

Training

Given model topology & training sequences, learn transition and emission probabilities

If π known, then MLE is just frequency observed in training data

$$a_{k,l} = \frac{\text{count of } k \to l \text{ transitions}}{\text{count of } k \to \text{anywhere transitions}}$$

 $e_k(b) = \dots$

pseudocounts?

If π hidden, then use EM: given π , estimate θ ; given θ estimate π . Viterbi Training given π , estimate θ ; given θ estimate π

Make initial estimates of parameters θ Find Viterbi path π for each training sequence Count transitions/emissions on those paths, getting new θ Repeat

Not rigorously optimizing desired likelihood, but still useful & commonly used. (Arguably good if you're doing Viterbi decoding.) **Baum-Welch Training** given θ , estimate π ensemble; then re-estimate θ

$$P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)$$

=
$$\frac{f_k(i \mid \theta) a_{k,l} e_l(x_{i+1}) b_l(i+1 \mid \theta)}{P(x \mid \theta)}$$

Estimated # of $k \rightarrow l$ transitions $\hat{A}_{k,l}$

$$= \sum_{\text{training seqs } x^j} \sum_i P(\pi_i = k, \ \pi_{i+1} = l \mid x^j, \theta)$$

New estimate $\hat{a}_{k,l} = \frac{\hat{A}_{k,l}}{\sum_l \hat{A}_{k,l}}$

Emissions: similar

(NB: overfitting)

HMM Summary

Viterbi – best single path (max of products)

Forward – Sum over all paths (sum of products)

Backward – similar

Baum-Welch – Training via EM and forward/backward (aka the forward/backward algorithm)

Viterbi training – also "EM", but Viterbi-based

HMMs in Action: Pfam

- Proteins fall into families, both across & within species
 - Ex: Globins, GPCRs, Zinc Fingers, Leucine zippers,...
- Identifying family very useful: suggests function, etc.
- So, search & alignment are both important
- One very successful approach: profile HMMs

Helix	AAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCC
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTORFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP	DPVGILYAVFKADPSIMAKFTOF
GLB5_PETMA	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU	GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus	Ls vaWkv g.Lf.P. FF

Helix	DDDDDDEEEEEEEEEEEEEEEEEEE	FFFFFFFFFFFF
HBA_HUMAN	-DLSHGSAQVKGHGKKVADALTNAVAHVD	DMPNALSALSDLHAHKL-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD	NLKGTFATLSELHCDKL-
MYG_PHYCA	KHLKTEAEMKASEDLKKHGVTVLTALGAILKKK-G	HHEAELKPLAQSHATKH-
GLB3_CHITP	AG-KDLESIKGTAPFETHANRIVGFFSKIIGELP	NIEADVNTFVASHKPRG-
GLB5_PETMA	KGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTE	KMSMKLRDLSGKHAKSF-
LGB2_LUPLU	LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVV	VTDATLKNLGSVHVSKG-
GLB1_GLYDI	SGASDPGVAALGAKVLAQIGVAVSHLGDEG	KMVAQMKAVGVRHKGYGN
Consensus	. t vHg kv. a al d	.аl.1 н.

Helix	FFGG	GGGG	GGG	GGG	GGG	GGG	G	H	ннн	ннн	IHHH	HHH	ннн	HH	ннн	ннн	
HBA_HUMAN	-RVDPV	JNFK	LLSI	HCL	LVT	LAA	HLP.	AEFT	[PAV	HASI	DKF	LAS	VST\	LI	SKY	R	
HBB_HUMAN	-HVDPI	ENFR	LLGI	NVL.	VCV	LAH	HFG	KEFI	[PPV	QAA Y	ZQKV	VAG	VANA	ALA	HKY	H	
MYG_PHYCA	-KIPI	YLE	FIS	EAI	IHVI	LHS	RHP	GDF	GADA	QGAN	INKA	LEL	FRKI	DIA	AKY	KEL	GYOG
GLB3_CHITP	VTHI	DQLN	NFR	AGF	VSYI	мка	HT-	-DFA	A-GA	EAAV	GAT	LDT	FFGN	4IF	SKM		
GLB5_PETMA	-QVDP(QYFK	VLA	AVI	ADT	VAA	G			DAGE	FEKL	MSM	ICII	LLR	SAY		
LGB2_LUPLU	VADA	AHFP	VVKI	EAI	LKT:	IKE	VVG.	AKWS	SEEL	NSAV	TIA	YDE	LAI	VIK	KEM	NDA	A
GLB1_GLYDI	KHIKAÇ	QYFE	PLG	ASL	LSAI	MEH	RIG	GKMN	IAAA	KDAV	IAAA	YAD	ISGA	AL1	SGL	QS	
Consensus	v.	f	1 .					f		aa.	k.			1	sky	~	

Alignment of 7 globins. A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7. Could we have a profile (aka weight matrix) w/ indels?

Figure 5.2 The transition structure of a profile HMM.

- M_j: Match states (20 emission probabilities)
- I: Insert states (Background emission probabilities)
- Dj: Delete states (silent no emission)

Silent States

Example: chain of states, can skip some

Problem: many parameters.

A solution: chain of "silent" states; fewer parameters (but less detailed control)

Algorithms: basically the same.

Using Profile HMM's

Search

Forward or Viterbi

Scoring

Log likelihood (length adjusted)

Log odds vs background

Z scores from either

Alignment

Viterbi

next slides

Likelihood vs Odds Scores

Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

Pfam Model Building

Hand-curated "seed" multiple alignments

- Train profile HMM from seed alignment
- Hand-chosen score threshold(s)
- Automatic classification/alignment of all other protein sequences
- 7973 families in Rfam 18.0, 8/2005 (covers ~75% of proteins)

Model-building refinements

Pseudocounts (count = 0 common when training with 20 aa's) $e_i(a) = \frac{C_{i,a} + A \cdot q_a}{\sum_a C_{i,a} + A}, \quad A \sim 20, \ q_a = \text{ background}$ (~50 training sequences)

Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...) (~10-20 training sequences)

More refinements

Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.

Match/insert assignment: Simple threshold, e.g. "> 50% gap ⇒ insert", may be suboptimal. Can use forward-algorithm-like dynamic programming to compute max *a posteriori* assignment.

Numerical Issues

Products of many probabilities $\rightarrow 0$

For Viterbi: just add logs

For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation

Keep high precision and perhaps scale factor

Working with log-odds also helps.

The Bio Interlude: Chromatin Codes & some DNA binding experiments

Chromatin

50 nm

Histone Codes

	N-term	inal tail		
	910 14	18	23	28
CP.	Ac			
	Ac			
(Me			
	P			P
	P Ac			
	P Ac		Ac	Me
Ac	Ac			_
5 A	c 12	Ac		
8	}	16		-

modification state	"meaning"
unmodified	gene silencing?
acetylated	gene expression
acetylated	histone deposition
methylated	gene silencing/ heterochromatin
phosphorylated	mitosis/meiosis
phosphorylated/ acetylated	gene expression
higher-order combinations	?
unmodified	gene silencing?
acetylated	histone deposition
acetylated	gene expression

A genomic code for nucleosome positioning

Eran Segal, Yvonne Fondufe-Mittendorf, Lingyi Chen, AnnChristine Thastrom, Yair Field, Irene K. Moore, Ji-Ping Z. Wang and Jonathan Widom doi:10.1038/nature04979 (7/19/06)

Method: ~ "Ist order WMM" (as above) trained on 200 aligned nucleosome binding seqs; alt: MEME-like EM algorithm Experimental approaches to learning DNA binding proteins & their targets

Gel Mobility Shift Assay

Chromatin Immuno-Precipitation

LYSE CELLS

BREAK DNA INTO SMALL (~ 300 NUCLEOTIDE) FRAGMENTS

