Maximum likelihood fitting of extreme value distributions

Sean R. Eddy
Dept. of Genetics, Washington University School of Medicine
eddy@genetics.wustl.edu

14 November 1997

Abstract

I discuss maximum likelihood fitting of extreme value distributions, with an emphasis on
applications in evaluating the statistical significance of sequence or structural alignment scores.
The aim is not to present any novel theory. The techniques in this report are well known
in the literature, accessible to competent mathematicians, and have already been applied in
some computational biology applications. Rather, my aim is to review the maximum likelihood
method in a form that is easily implemented in computational sequence analysis software. As
a source for specific examples, I use the implementation of E-value calculations in the profile
hidden Markov model software package HMMER.

1 Introduction

In database search applications in computational biology, we generally wish to determine the sta-
tistical significance of a score. This score may be determined by a variety of methods. It may be a
sequence alignment score or a structural threading score; it may be the result of an ad hoc scoring
system or it may be the log probability under a probabilistic model such as a hidden Markov model.
Regardless of the means used to arrive at the score, we will wish to know what the probability is
that we would see a given score by chance in a database of negative (nonhomologous) sequences.

These statistical measures are represented as “P-values” or “E-values”. A P-value is the prob-
ability of seeing at least one score S greater than or equal to some score z in a database search
of n sequences; we will use the symbol P(z,n) to mean a P-value. An E-value is the ezpected
number of nonhomologous sequences with scores greater than or equal to a score z in a database
of n sequences; we will use the symbol £(z,n) to mean an E-value. The two measures are trivially
obtained from the probability P(S > x) that any single nonhomologous sequence scores better than
or equal to x:

P(z,n) = 1-— e "P(522)
E(x,n) = nP(S>ux)

We therefore need a solution for P(S > z), the distribution of the score statistic z.

In computational biology, analytical solutions for the distribution P(S > z) only exist for
ungapped local alignments, where the distribution is an eztreme value distribution (EVD). In the
case of gapped local alignments, simulations indicate that these scores also roughly obey an extreme
value distribution, but the relevant parameters can only be determined by simulation and empirical

curve-fitting. Programs such as FASTA, the new gapped alignment versions of BLAST, several
implementations of the Smith/Waterman algorithm, and some other search algorithms use such
techniques to fit observed score distributions to an EVD.

Perhaps the simplest fitting method to implement is the linear regression method. However,
as shown below, the linear regression method is markedly inferior to a second approach, mazimum
likelihood. Maximum likelihood fitting to the extreme value distribution has been described in the
literature by Mott [1] and in a textbook by Lawless [2] (and undoubtedly other places), and is now
the technique used by the NCBI gapped BLAST software.

The purpose of this paper is to write up my notes on the implementation of maximum likelihood
fitting of the extreme value distribution in HMMER. The format is deliberately an “EVD for poets”
presentation. The goal is to obviate the need for any differential calculus on the part of a software
implementor, and to simply give an almost pseudocode implementation of the necessary methods.

2 The extreme value distribution

The probability density function (pdf) and the distribution function of the extreme value distribu-
tion are:

P(z) = Aexp [—)\(x —) — e_)‘(z_“)] (1)

P(S <) =exp [—e_’\(x_“)] (2)

The particular form of these equations follows Altschul and Gish [3]. The theory developed
in these notes is taken from a book by Lawless [2], a source recommended by Altschul (personal
communication). In Lawless, the EVD is described by parameters v and b, and is “backwards”
(longer tail to the left); use (x —u) = —(x — p) and b = 1/A to convert Lawless’ notation to that
of Altschul and Gish. The extreme value density and distribution functions for 4 =0 and A = 1.0
are shown below.

the extreme value distribution

density P(S=x)

08 1 distribution P(S<x)

0.6 |

04 |

02

0.0 L
-5.0 0.0 5.0 10.0

The pu and X parameters are location and scale parameters, respectively. Their effects are shown
in following figures.

effect of the scale parameter lambda
0.40 T T

0.30 0.6 -

lambda = 0.5
—— lambda=1.0
-——— lambda = 2.0

0.20 04 -

0.10 02 ¢

0.0 -
10.0 -10.0

L J
10.0 20.0

X

These plots were generated by a simple C program evd.c, where the key lines are:

/* density function P(S=x) */

px = lambda * exp(-1.*lambda * (x - mu) - exp(-1* lambda * (x - mu)));
/* distribution function P(S < x) */

psx= exp(-1% exp(-1*lambda * (x - mu)));

3 Fitting the EVD, 1: Linear regression

A fast, simple method of fitting observed data to the EVD is by linear regression fit to a loglog
transformation of the P(S < z) histogram:

log[—log P(S < z)] = —Az + Ap (3)

This is a straight line with slope —\, y intercept Ay, and z intercept p. Any canned linear
regression routine can quickly fit this line; e.g. £it() in Numerical Recipes in C [4] or Linefit ()
in the SQUID library.

The trouble with linear regression is that it is not robust. Outliers have a strong influence.
An example is shown below, in which I generated N EVD samples with x = —20, A = 0.4
(EVDrandom()) , collated a histogram (using the histogram.c functions), fitted it by linear re-
gression (EVDBasicFit()), and calculated % deviation of the estimated y and A from the original
parametric y and A. This experiment was repeated 500 times for four values of N, and the average
and maximum deviations were kept for each N.! The results of this experiment were:

samples in EVD histogram
100 1000 10,000 100,000
% error in u 2% 1% 0.9% 0.9%
max error in u 24% 13% 10% 10%
% error in A 12% ™% 5% 3%
max error in A 49% 33% 25% 20%

!See the testdriver Shiva/evd_test.c, RCS 1.1, which uses EVD code in histogram.c, RCS 1.3. An example
command line: testdriver -v -n 500 -m 10000 | grep "error on lambda" | avg.perl

Plots of the fits from one such simulation experiment are shown below. The example was chosen
to be somewhat worse than the average case, to emphasize the source of the error. Qutliers in the
tail occur with significant probability and confound the regression fit.

02 - : : : . : . 50 - : : : .

® observed histogram
linear regression fit
—— actual line

0.0 -

® observed data
fitted histogram
expected histogram

0.1 ¢

Wed Nov 12 17:57:57 1997

Py PAPAPY Py | ~10.0 .

00 ! |
-25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 -30.0 -20.0 -10.0 0.0 10.0

We could imagine schemes to work around the non-robustness. For example, a weighted linear
regression (WeightedLinefit()) might be tried with high variances on poorly populated points. It
is also possible to directly optimize a chi-squared fit to the histogram by a brute force grid search
(see histogram.c:evd bruteforce()). Early prototypes of HMMER2 used such schemes.

4 Fitting the EVD, 2: Maximum likelihood

The definitive guide to the theory of maximum likelihood fits to the EVD appears to be Lawless
[2]. T first give the derivation of the relevant equations in (extreme) detail. Lawless does not (and
besides, uses a different notation than Altschul and Gish) and I had to convince myself of the
correctness of the derivation; second, I don’t trust my algebra, so this is my permanent record
if I forget how it all worked; and third, some necessary details were missing from Lawless and
had to be derived. Only three of the equations derived in this section are actually needed in an
implementation: (9), (10), and (11). The algorithm in the implementation is then summarized,
and some results of simulations are given.

4.1 Mathematical derivations

The likelihood of drawing n samples z; from an extreme value distribution with parameters A and
W is:

P(z1... 20l A p) = [] Nexp [_,\(xz. _) — e—m—u)]
=1

which is readily rearranged to give:

P(z1... 20X p) = X" exp li —Azi —p) = i e’\(““)] (4)

=1 i=1
The log likelihood log L(A,) = log P(z1 ... x|\, p) is:

log LA\, 1) = nlog A — Y (@ — p) — Y e A@=#) 5)

In a maximum likelihood fitting approach, our goal is to find X and [t that maximize the log
likelihood log L(A,). A brute force fit is possible, since there are only two parameters, but it is
more efficient to get partial first derivatives from log L(\, 1) so a more directed optimization can
be done:

Odlog L (g

= nA-A) e M@ 6
o0 2 ©)
OlogL _ n_ g~ (2 e M)

The maximum likelihood estimates A and /i are the solutions to mg—ﬁL = 0 and alg—§L = 0.
Lawless gives a useful trick here, in which we only need to solve one equation instead of two.

Observe that when (6) is set to zero, it can be used to get 4 in terms of \:

=1
n ~
Zef)\(z,fu) - n
i=1
n ~
Zeﬂ\xl Mo_ o,
i=1
n ~
e)‘ﬁZeﬂ\w’ = n
i=1
N n
e M = 126_’\“ (8)
n -
1=1
1N g *
et = [—Ze’\wl]
L)

po= —llog an:e‘x”“] 9)
A L)

Now we can substitute (8) into (7), and look for an equation that gives us A in terms of the

T;'s:

n n
n N N Nz —ii
==Y (zi—p)+ > (zi— pe Meiml) = ¢
A i=1 =1
n n n n R .
T—Zmz—l—zll—l—Z(x,—/})e_)‘mie)‘“ =0
A =1 =1 =1
n_ < P (s — e
==Y x4+ np+ ==L =0
3 ; i + i v
n n 7y _S\I
n) L (@ — e
K—sz—knu—k Ty o e =0
=1 n i=1

n AT ~ n AT
n . n e M — gy e
) SRR S A
A =1 i=1€ ¢
n n AT
n L nYy o xie R
T mAnit == = 0
A =1 i=1€¢ i
1 1& > zje i
Ani3 i=1€ "7

This line is well-behaved in the vicinity of the root, as shown below for a simulation of 1000
samples from an EVD with A = 0.4 and p = —20 (X is varied along the X axis):

for lambda = 0.4, mu = -20, 1000 samples

3.5 ¢

Thu Nov 13 16:20:11 1997

0.20 0.30 0.40 0.50

4.2 Solving for the root of (10)

Because it is well-behaved, we can apply a fast Newton-Raphson algorithm to find the root. We
need the first derivative of (10) to use Newton-Raphson. It turns out that Lawless does not give the
derivative — hence, one of the reasons I had to put some effort into this, since I'm calculus-impaired
— but it is relatively easy to derive. Recall from the algebra of derivatives that:

([)': g-f'—f-q
g g’
Starting from (10), let:

f = ine_j\xia

=1
—Xz;.
e 4

n
i=1

and then differentiate f and g with respect to A:

n ~
! 2 _—Ax;
f - _ine Y
i=1

n ~
g = - ine_)"“.
i=1
Differentiating (10) is now straightforward, and after minor rearrangement yields:

C N2 R

d (Shime™)" wn g2ede g (11)
o 2 —Az; \

CRN IR

1=

4.3 Implementation of ML EVD fitting

For an implementation, the key equations are (9), (10), and (11). We also need the Newton/Raphson
algorithm (see [4] for details) but it turns out that a satisfactory implementation of Newton/Raphson
only takes a few lines of code. The algorithm is:

e Guess A. (Linear regression fitting gives a very good guess, but the function appears to be so
smooth that even random guesses, like A = 0.2, seem to work fine.)

e Apply Newton/Raphson to find the) that satisfies (10):

— calculate the target function f and its first derivative f’ at X, using (10) to calculate f
and (11) to calculate f'.
— If f is within some absolute tolerance of zero (e.g., 10~%), stop; we have found).

— Else, estimate a new A = X\ — %, and do another iteration.
e Plug) into (9) to get .

HMMER implements basic algorithm in two functions. Lawless416() calculates the target func-
tion and its first derivative, given the current estimate of A (the name comes from Lawless’ equa-
tion 4.1.6, the target function). EVDMaxLikelyFit() is a no-frills implementation of the New-
ton/Raphson iterations and the solution of /.

4.4 Results of ML EVD fits

I repeated the experiment from the linear regression section, now applying maximum likelihood
fitting:

samples in EVD histogram
100 1000 10,000 100,000
% error in p 1% 03% 0.1% 0.03%
max error in - 4% 1% 0.4% 0.1%
% error in A 6% 2% 0.6% 0.2%
max error in A 27% % 2.4% 0.9%

Maximum likelihood is significantly superior to linear regression for fitting the EVD. The ML
fit for 100 data points is better than the linear regression fit for 10,000 data points.

An example of a fairly “bad” ML fit (6% error in A for a 1000 point simulation) is shown below:

02

® observed histogram
fitted curve by ML
expected from lambda, mu

0.1 ¢

normalized histogram

4 M LK
0.0 ‘ : J
-25.0 -20.0 -15.0 -10.0 5.0 0.0

score

5 Fitting “censored” histograms to the EVD

We may wish to fit only the right tail of the histogram, rather than the whole histogram. For
example, the left (low scoring) tail may be contaminated with very poor-scoring sequences that do
not conform to the EVD, so we don’t wish to include them in the fit. If, a priori, we choose to cut
off the data such that we do not include any z; < c in the fit, we have a so-called “Type I censored”
data set [2].

In the equations that follow, let ¢ be the censoring value and z be the number of censored
samples, e.g. the number for which z; < c.

For the observed samples, their probability is still given by (1). For the censored samples, their
probability is given by (2) — the cumulative distribution at ¢ gives us the probability of z; < c.
Therefore the probability of a data set of n observed samples and z censored samples is:

L(zy... %0, Tnt1--- Tntz| A p) = <ﬁ Aexp [—)\(:ci —p) — e_’\(“_“)D (exp [—e_)‘(c_“)])z
=1

The log likelihood L(A, i) is then:

n

n
log L\,) = nlog A — ze M1 — Z Mz — p) — Z e M@i—n) (12)
Again, we wish to find A and /i that maximize the likelihood. The form of (12) is almost the
same as that of (5), so the procedure we follow is almost identical. We need the first derivative of
the likelihood with respect to both parameters:

QgL _ e Mo _)Y ¢ A w) (13)
O i=1
al(;)fL - ; +2(e— e T =Y (@i — p) + Y (@i — p)e NEH (14)
=1 =1

Setting (13) to zero and solving for /i in terms of \ gives:

= —; log l% <ze_5‘c + i 6_5‘“>‘| (15)

Substituting (15) into (14) gives us our target equation:

1 1 e e i

==y @it R (16)
ze—)\c + Ez— e—)\ﬂh

Finally, the first derivative of the target equation with respect to A is:

R 2 A
d - (zce ,\c_|_Z L zie /\zi) 2 ‘AC+ZF w e ATi 1 an)
dX (ze /\c_|_zn7 e AmZ)Q ze ’\C—i-ZZ: e AT A2

Given n observed data points z;—1. ., the number z of censored samples, and the censoring
cutoff ¢, we can now solve for maximum likelihood estimates A and /i using the same procedure
we used for uncensored data, by substituting equations (15), (16), and (17) for equations (9), (10),
and (11).

HMMER implements equations (16) and (17) in Lawless422(). The Newton/Raphson iterations
and equation (15) are implemented in EVDCensoredFit ().

6 Results

The function ExtremeValueFitHistogram() in HMMER attempts to do a robust EVD fit to an
observed histogram. It censors the data below the peak of the histogram, so it only fits the right
side of the curve (guarding against low-scoring outliers). Because it expects many low-scoring
outliers, it attempts to estimate z rather than directly counting z. It removes outliers to the
right first by cutting above a given score (high hint) and then iteratively lowers its cutoff and
reestimated g and A until the high cutoff is at an estimated E-value of 1. Finally, a certain loss of
precision is introduced because it fits to a binned histogram, rather than fitting to a list of observed
scores.

On simulated EVD data with no noise, ExtremeValueFitHistogram() gives the following ac-
curacies (EVD with gy = —20, A = 0.4, 500 simulations):

samples in EVD histogram
100 1000 10,000 100,000
% error in p 2% 0.6% 0.2% 0.1%
max error in g 15% 5% 0.6% 0.3%
% error in A 15% 3% 0.9% 0.3%
max error in A 87% 16% 4% 1%

(One reason the accuracies degrade is that left-censoring removes about 40% of the data before
the fitting occurs.)

10,000 samples seem to be sufficient for reasonable fits.

On simulated EVD data with noise injected on the high side, ExtremeValueFitHistogram()
is moderately robust but can go squirrely if a lot of noise is present: (1000 EVD samples with
p = —20, A = 0.4; varying amount of Gaussian noise with mean 20, std. dev. 20; 500 simulations)

samples of Gaussian noise
0 10 50 100 500
% error in 0.6% 05% 0.8% 2% 4%
max error in y 5% 5% 4% 1% 8%
% error in A 3% 3% 4% ™% 68%
max error in A 21% 16% 17% 16% 74%

However, compare that to the rapid degradation of straight ML estimation (no censoring, no

outlier removal):

samples of Gaussian noise
0 10 50 100 500

% error in p 0.3% 0.6% 3% 5% 27%
max error in g 1% 2% 4% ™% 29%
% error in \ 2% 10% 36% 52% 81%

max error in \ 8% 54% 2% 5% 83%

References

[1] Richard Mott. Maximum likelihood estimation of the statistical distribution of Smith—
Waterman local sequence similarity scores. Bull. Math. Biol., 54:59-75, 1992.

[2] J.F. Lawless. Statistical Models and Methods for Lifetime Data, chapter 4, pages 141-202. John
Wiley & Sons, 1982.

[3] Stephen F. Altschul and Warren Gish. Local alignment statistics. Meth. Enzymol., 266:460-480,
1996.

[4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C.
Cambridge University Press, Cambridge, UK, 1988.

10

