A History of Supercomputing

Burton Smith
Microsoft
Outline

- Definitions
- Early days: Colossus and Eniac
- Mainframes: Univac LARC to CDC 7600
- SIMD systems
 - Processor arrays: Illiac IV, PEPE, and BSP
 - One-bit arrays: Staran, DAP, and the Goodyear MPP
 - Vector pipelining: TI-ASC, CDC Star-100, and Cray-1
 - Wide instructions: FPS, Multiflow, and Cydrome
- MIMD systems
 - Shared memory: Cray X-MP to SGI Altix
 - Distributed memory: Cosmic Cube to Blue Gene
- Japan-US competition
- What next?
Definitions

- Supercomputer: the world’s fastest computer at the time
- SIMD: Single Instruction Stream, Multiple Data Stream
 - One instruction at a time, each operating on an array of data
- MIMD: Multiple Instruction Stream, Multiple Data Stream
 - Multiple processors asynchronously issuing instructions
- Shared Memory: MIMD computer in which a common memory is accessible by all processors
 - UMA: Uniform memory access by all processors
 - NUMA: Non-uniform memory access, based on placement
- Distributed Memory: MIMD computer in which the memory is partitioned into processor-private regions
- RISC: Reduced Instruction Set Computer
 - Uses fast and simple instructions to do complex things
- Pipelining: Processing in assembly-line style
Names and Places

- BMD/ATC: Ballistic Missile Defense Advanced Technology Center, Huntsville, AL
- BRL: Ballistics (now Army) Research Laboratory, Aberdeen, MD
- DARPA: Defense Advanced Research Projects Agency, VA
- NASA-Ames: Ames Research Center, Mountain View, CA
- NASA-Goddard: Goddard Space Flight Center, Greenbelt, MD
- Livermore: Lawrence Livermore National Laboratory, Livermore, CA
- Los Alamos: Los Alamos National Laboratory, Los Alamos, NM
- NSA: National Security Agency, Fort Meade, MD
- Sandia: Sandia National Laboratories, Albuquerque, NM
Early days: Colossus

- Used at Bletchley Park, England during WW II
 - for cryptanalysis of Lorenz SZ40/42 rotor systems (“Fish”)
 - Only recently declassified by Her Majesty’s Government
- Concepts by Max Newman *et al.*
- Designed and built by Tommy Flowers
 - at the Post Office Research Station, Dollis Hill
- Features:
 - Paper tape loop data input at 30 mph = 5000 characters/sec
 - 1500 vacuum tubes (“valves”) in the Mark I, 2400 in Mark II
 - Programmed by switches
 - Not a general-purpose computer
Colossus
Early days: Eniac

- Built at Penn’s Moore School for BRL, Aberdeen, MD
 - The motivating application was artillery firing tables
 - Its first use was evaluating H-bomb feasibility
- Designed and built by J. Presper Eckert and John Mauchly
- Unveiled at the Moore School on February 15, 1946
- It had 17,468 vacuum tubes and consumed 174 KW
 - Reliability was a concern, so it was left on continuously
- It was 80 feet long and weighed 30 tons
- Programming was via switches and patch cables
- Not a general-purpose computer
Other early supercomputers

- Zuse Z3 (1941)
- Manchester/Ferranti Mark I (1951)
- Univac 1 (1951)
- The IAS machines (1952)
Mainframes

- The 50’s and 60’s saw fast progress in computer technology
- Most of it was first used in “mainframe” supercomputers
 - These systems were used for both business and science
 - Later, supercomputers became much more science-oriented
- Examples of new technology included:
 - Magnetic core memory
 - Transistor logic circuits
 - Floating point hardware
 - Pipelining
 - High level languages and compilers
Mainframes: LARC

- Begun in 1955 for Livermore and delivered in 1960
- Had dual processors and decimal arithmetic
- Employed surface-barrier transistors and core memory
Mainframes: Stretch and Harvest

- IBM 7030 (STRETCH)
 - Delivered to Los Alamos 4/61
 - Pioneered in both architecture and implementation at IBM

- IBM 7950 (HARVEST)
 - Delivered to NSA 2/62
 - Was STRETCH + 4 boxes
 - IBM 7951 Stream unit
 - IBM 7952 Core storage
 - IBM 7955 Tape unit
 - IBM 7959 I/O Exchange
Mainframes: CDC 6600

- Seymour Cray and Bill Norris left Univac to start CDC
- Cray’s CDC 1604 was the first successful transistor system
- He wanted to build a scientific supercomputer
- The 6600, built with silicon transistors, shipped Sept. 1964
 - The chief architects were Seymour Cray and Jim Thornton
- The 6600 had several notable features
 - A very simple instruction set, lending itself to more speed
 - No decimal arithmetic needed or wanted
 - 10 arithmetic function units able to process in parallel
 - This overlapped execution style is now called superscalar
 - It was coordinated by a famous circuit called the scoreboard
 - Parallel I/O processors using a new idea called multithreading
 - Some say RISC means “Really Invented by Seymour Cray”
 - A futuristic operator’s console was provided at no extra charge
CDC 6600 Console
Mainframes: IBM 360/91

- IBM’s Tom Watson was angry:
 "Last week, Control Data ...announced the 6600 system. I understand that in the laboratory...there are only 34 people including the janitor. Of these, 14 are engineers and 4 are programmers. Contrasting this modest effort with our vast development activities, I fail to understand why we have lost our industry leadership position by letting someone else offer the world's most powerful computer."

- The 360/91 (AKA 370/195) was IBM’s answer
- It was delivered to NASA-Goddard in October 1967
- Killer App: Passenger Airline Reservation Systems (1964)
 - Jointly developed by IBM, American, and United Airlines
 - Originally written in IBM assembly (i.e. machine) language
- It was very close to the CDC 7600 in performance
- The 360/91 also had a pretty impressive console...
IBM 360/91 Console
Mainframes: CDC 7600

- The 7600 was delivered to Livermore in early 1969
- It was highly compatible with the 6600
- Besides being faster, its arithmetic was pipelined
 - This meant the arithmetic units were never busy
- It was so compact it had to be cooled with freon
- It was also one of the world's most beautiful computers
Two CDC 7600s
SIMD arrays: Illiac IV

- By the late 60’s, it was clear mainframes weren’t enough
- To improve performance, SIMD array machines were built or proposed with many arithmetic processing units
 - Solomon was an early Westinghouse SIMD array prototype
- The Illiac IV was a University of Illinois/Burroughs project
 - Funded by DARPA from 1964 onward, it was usable in 1975
 - The chief architect, Dan Slotnick, came from Westinghouse
- It was to have 256 arithmetic units, later cut back to 64
- The thin-film memory system was a major headache
- After student demonstrations at Illinois in May 1970, the project was moved to NASA-Ames
- Languages like IVtran (*not* pronounced *four-tran*) aimed to use parallel loops to express the necessary parallelism
 - Much compiler expertise was developed working on Illiac IV
ILLIAC IV
SIMD Arrays: PEPE and BSP

- Both were Burroughs designs derived from Illiac IV
- PEPE had 288 processing elements and was designed to track ballistic missiles
 - It was delivered to BMD/ATC in Huntsville in 1976
- BSP had 16 processing elements and was aimed at commercial use
 - Richard Stokes was chief architect
 - The first customer was Marathon Oil Co. in Denver, CO
 - The project was cancelled in 1980, before its first delivery
One-bit Arrays: STARAN, DAP, MPP

- These were arrays of processors that were only one bit wide
 - They were inexpensive to implement, especially on one chip
 - Arithmetic was serial (like grade-school, only binary)
 - It could use whatever precision made sense for the problem
- Goodyear Aerospace developed STARAN in 1972
 - It was a 256 by 256 array with lots of data permuting power
 - Ken Batcher, an Illinois graduate, was chief architect
 - It was great at image processing, though not intended for it
 - The ASPRO version was used on Navy AWACS aircraft
- The Goodyear MPP was a single-chip STARAN successor
 - The array size was reduced to 128 by 128
 - Delivered to NASA-Goddard in 1984
- ICL (UK) developed the Distributed Array Processor
 - Stuart Reddaway was the architect
One-bit Arrays: Connection Machine

- Danny Hillis and his colleagues initially based the design on a “connectionist” approach to artificial intelligence
 - The design came out of Danny’s PhD thesis at MIT
- The CM-1 was a hypercube-connected one-bit array
 - High-level language support was excellent
 - The machine proved useful for scientific computation
- The CM-2/CM-200 added some 32-bit floating point hardware
 - Many HPC users like NSA and Los Alamos bought them
- The CM-2 had an array of light-emitting diodes (right)
 - Not one per processor, sadly
- The CM-5 was MIMD, not SIMD
Vector pipelining: TI ASC

- The ASC was designed to exploit Fortran loops
 - This motivated the vector pipelining decision
 - The ASC’s Fortran compiler was state-of-the-art
- Several systems shipped, beginning in 1974
 - Geophysical Fluid Dynamics Laboratory, Princeton, NJ
 - Ballistic Missile Defense, Huntsville
 - Naval Research Laboratory, Anacostia, MD
- The GFDL machine had an interesting performance tool: a strip-chart recorder perched on top that plotted vector length
 - The recording was returned to the user with the job output
Vector Pipelining: CDC Star 100

- CDC used APL rather than Fortran loops as a vector model
 - APL is a language invented by Ken Iverson of IBM Research
 - Neil Lincoln and Jim Thornton were the architects
 - Sidney Fernbach at Livermore was the target customer
- The Star-100 had poor scalar (non-vector) performance
 - The result was highly limited applicability
 - This effect is called Amdahl’s law
- Both Livermore and Los Alamos were scheduled to get one
 - Los Alamos backed out in favor of the Cray-1
 - Livermore got both Star-100 systems as a result
Amdahl’s law

- If w_1 work is done at speed s_1 and w_2 at speed s_2, the average speed s is \(\frac{w_1 + w_2}{\frac{w_1}{s_1} + \frac{w_2}{s_2}} \)
 - This is just the total work divided by the total time
- For example, if $w_1 = 9$, $w_2 = 1$, $s_1 = 100$, and $s_2 = 1$
 then \(s = \frac{10}{1.09} \approx 9 \)
 - This is obviously not the average of s_1 and s_2

Vector Pipelining: Cray-1

- Unlike the CDC Star-100, there was no development contract for the Cray-1
 - Mr. Cray disliked government’s looking over his shoulder
- Instead, Cray gave Los Alamos a one-year free trial
- Almost no software was provided by Cray Research
 - Los Alamos developed or adapted existing software
- After the year was up, Los Alamos leased the system
 - The lease was financed by a New Mexico petroleum person
- The Cray-1 definitely did not suffer from Amdahl’s law
 - Its scalar performance was twice that of the 7600
 - Once vector software matured, 2x became 8x or more
- When people say “supercomputer”, they think Cray-1
Cray-1
VLIW: FPS, Multiflow, and Cydrome

- VLIW stands for Very Long Instruction Word
 - It is a kind of SIMD system in which each arithmetic unit can be doing something different (thus the need for width)
- Floating Point Systems led in 1976 with the AP-120B
 - Glenn Culler was the chief architect
 - These systems were embedded in GE CAT scanners
 - They were also used widely for seismic data processing
- Multiflow was founded in 1984 by Josh Fisher to exploit some compiler technology he had been pursuing at Yale
 - The first shipments of the Trace 7/200 were in 1987
- Bob Rau’s company, Cydrome, was also founded in 1984 and demonstrated the Cydra-5 machine in 1987
- Both systems had instructions with seven fields and 256 bits
- Technically, none of these machines was a supercomputer
Shared Memory: Cray Vector Systems

- Cray Research, by Seymour Cray
 - Cray-1 (1976): 1 processor
 - Cray-2 (1985): up to 4 processors*
- Cray Research, not by Seymour Cray
 - Cray X-MP (1982): up to 4 procs
 - Cray Y-MP (1988): up to 8 procs
 - Cray C90: (1991?): up to 16 procs
 - Cray T90: (1994): up to 32 procs
 - Cray X1: (2003): up to 8192 procs
- Cray Computer, by Seymour Cray
 - Cray-3 (1993): up to 16 procs
 - Cray-4 (unfinished): up to 64 procs
- All are UMA systems except the X1, which is NUMA

*One 8-processor Cray-2 was built
Shared Memory: Multithreading

- These systems pipeline MIMD architecture in the same way vector systems pipeline SIMD architecture
 - Like vector multiprocessors, they can be UMA or NUMA
- Examples include
 - Denelcor HEP (1980): up to 16 procs
 - Tera MTA-1 (1998): up to 16 procs
 - Cray MTA-2 (2002): up to 256 procs
- A variant form of multithreading is Simultaneous Multithreading (SMT)
 - Intel® calls SMT “Hyper-Threading”

Cray MTA-2
Shared Memory: CC-NUMA

- Cache-coherent NUMA systems were researched at Stanford and developed as products by Silicon Graphics
 - Kendall Square Research used a variant called COMA, which stands for Cache-Only Memory Architecture
- These systems automatically move data among *caches* at each processor to minimize processor data access times
- SGI CC-NUMA systems:
 - Origin 2000 (1997): up to 128 procs
 - Origin 3000 (2003): up to 512 procs
 - Altix (2003): up to 512 procs*
- Kendall Square COMA systems:
 - KSR1: (1991): up to 1088 procs
 - KSR2: (1994): up to 5000 procs

* “Columbia” at NASA-Ames clusters 20 of these
Distributed Memory: Cosmic Cube

- Chuck Seitz and Geoffrey Fox pioneered the idea at Caltech
 - The first system (1982) was called the *Cosmic Cube*
 - It had 64 Intel® 8086 processors, each with an 8087 attached
 - The processors were connected in a 6-dimensional hypercube
 - They communicated by sending messages to each other
 - This system architecture now dominates supercomputing
- Early commercial systems included:
 - Ametek/S14 (1986): 68020, over 1000 procs
 - Intel® IPSC/1 (1985): 80286, up to 64 procs
 - nCUBE/10 (1985): custom, up to 1024 procs
- Variations since then are legion
Distributed Memory: Classic MPPs

- A classic MPP is a distributed memory system whose processing elements are individual (micro)processors.
- Examples include:
 - Cray T3D (1994), T3E (1996), XT3
 - Intel Touchstone series, Paragon (1992)
 - IBM SP-1 (1992), SP-2, Deep Blue, Blue Gene
 - And many others

Cray XT3 IBM Blue Gene/L
Distributed Memory: Clusters

- A cluster MPP is a distributed memory system whose processing elements are shared memory multiprocessors
- Examples include:
 - IBM eServer p575
 - NEC Earth Simulator (2002), SX-8
 - A vast multitude of home-made “Beowulf” clusters
 - Usually based on Intel or AMD processors
 - Even Government Labs have done this
The Top 500 List

- This is a list of the fastest computers in the world
 - www.top500.org
 - By definition, it’s a great place for supercomputer spotting
- Be very careful about the term “fastest”, though
 - Speed is measured by one benchmark program, LINPACK
 - LINPACK doesn’t care how well the system is connected
 - Shared memory isn’t useful for good LINPACK results
- With that caveat, it’s well worth a look
Japanese Systems: Fujitsu, NEC, Hitachi

- Japanese supercomputers mostly use vector processors with shared or (most recently) distributed memory architecture
- Fujitsu shipped its first vector system (Facom 230) in 1976:
 - This was followed by the VP200 (1982), VP400 (1985), VP2000 (1989), VP2600 (1990), and distributed memory VPP500 (1992), VPP700 (1996), and VPP5000 (1999)
 - Recently, Fujitsu has been selling scalar NUMA systems
- NEC got a late start on vectors, but caught up very quickly:
 - Tadashi Watanabe is the chief architect of these systems
- Hitachi has sold few supercomputers outside Japan
 - An exception is the distributed memory SR8000 (2000)
The National Superspeed Computer Project (1981)
- About ¥23 billion over 9 years
- Intended to produce a supercomputer
- Two projects: architecture and technology
- Companies: Fujitsu, NEC, Hitachi, Mitsubishi, Oki, Toshiba

The Fifth Generation Project (1982)
- About ¥55 billion over 10 years
- Centered at a new laboratory: ICOT
- Focused on artificial intelligence: inference, vision, speech
- MCC in Austin, TX was a US industrial response
DARPA Strategic Computing Program

- This program was intended to accelerate the development and application of parallel computing.
- It funded several industrial development projects over the period 1983-1993:
 - Thinking Machines: Connection Machine (1-bit SIMD array)
 - Bolt, Beranek, and Newman: Butterfly (shared memory)
 - Intel: Touchstone series (distributed memory)
 - Tera: MTA (shared memory)
 - Cray: T3D (distributed memory)
- Government agencies were encouraged to try these systems.
The DOE ASCI Program

- The Department of Energy was directed to use computer simulation to replace nuclear weapons testing.
- It has procured a series of distributed memory systems:

<table>
<thead>
<tr>
<th>System Name</th>
<th>Laboratory</th>
<th>Manufacturer</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Sandia</td>
<td>Intel</td>
<td>1995</td>
</tr>
<tr>
<td>Blue Pacific</td>
<td>Livermore</td>
<td>IBM</td>
<td>1996</td>
</tr>
<tr>
<td>Blue Mountain</td>
<td>Los Alamos</td>
<td>SGI</td>
<td>1998</td>
</tr>
<tr>
<td>White</td>
<td>Livermore</td>
<td>IBM</td>
<td>2000</td>
</tr>
<tr>
<td>Q</td>
<td>Los Alamos</td>
<td>Compaq</td>
<td>2002</td>
</tr>
<tr>
<td>Red Storm</td>
<td>Sandia</td>
<td>Cray</td>
<td>2004</td>
</tr>
<tr>
<td>Purple</td>
<td>Livermore</td>
<td>IBM</td>
<td>2006</td>
</tr>
</tbody>
</table>

- The performance range is about 100-fold.
What Next?

- Parallelism is becoming mainstream
 - Intel and AMD are putting multiple processors on a chip
 - It’s only a few now, but just wait!
- This will change the supercomputer playing field, again
 - Parallel application software will emerge
 - Parallel languages and compilers will enable it
 - Parallel architecture will evolve to match
- The world’s computers become one giant cluster
 - The cloud links them
 - We must make them safe
- What an exciting field it is with such challenges!
Apologies: Companies Not Mentioned

- Alliant
- Convex
- HP
- MasPar
- Matsushita
- Meiko
- Parsys
- Parsytec
- Quadrics
- Siemens-Nixdorf
- Sun