The Enigma Machine

History of Computing
December 6, 2006
Mike Koss
Invention of Enigma

- Invented by Arthur Scherbius, 1918
- Adopted by German Navy, 1926
- Modified military version, 1930
- Two Additional rotors added, 1938
How Enigma Works
Scrambling Letters

- Each letter on the keyboard is connected to a lamp letter that depends on the wiring and position of the rotors in the machine.
- Right rotor turns before each letter.
How to Use an Enigma

- Daily Setup
 - Secret settings distributed in code books.
- Encoding/Decoding a Message
Setup: Select (3) Rotors

- We’ll use I-II-III
Setup: Rotor Ring Settings

- We'll use A-A-A (or 1-1-1).
Rotor Construction
Setup: Plugboard Settings

- We won’t use any for our example (6 to 10 plugs were typical).
Setup: Initial Rotor Position

- We’ll use “M-I-T” (or 13-9-20).
Encoding: Pick a “Message Key”

- Select a 3-letter key (or indicator) “at random” (left to the operator) for this message only.
- Say, I choose “M-C-K” (or 13-3-11 if wheels are printed with numbers rather than letters).
Encoding: Transmit the Indicator

- Germans would transmit the indicator by encoding it using the initial (daily) rotor position...and they sent it TWICE to make sure it was received properly.
- E.g., I would begin my message with “MCK MCK”.
- Encoded with the daily setting, this becomes: “NWD SHE”.

Encoding

Now set our rotors do our chosen message key "M-C-K" (13-3-11).

Type body of message:

"ENIGMA REVEALED" encodes to "QMJIDO MZWZJFJR".

Complete message is then:

NWDSHE QMJIDO MZWZJFJR

Encodine: Reset Rotors
Decoding: Initial Setting

Setup is the SAME for encoding and decoding. Set rotors to "M-I-L" (13-9-20).
Decoding: Decode Indicator

Type in message indicator: “NWDSHE”.

 Confirm it decodes to “MCK MCK” (a valid message key).
Decoding: Message

- Set rotors to “M-C-K” (13-3-11)
- Type remainder of message: “QMJIDO MZWZJFJR” becomes “ENIGMA REVEALED”!
A Paper Enigma Machine

- Each rotor is modeled as a strip of paper; the electrical contacts are replaced by matching letters on left and right side of the strip.
- Keyboard and Lamps are replaced by a vertical list of letters on the right.
- Reflecting rotor is replaced by a matching group of letters on the left.
- Plugboard and rotor "ring settings" are not modeled.
Encode the letter “E”

Rotor setting: M, C, K

Rotor order: I, II, III

Sample Encode
Initial Setting

- Rotors I, II, and III
- “Window settings” of “M-C-K”
Encode a letter

- (First!) Advance the right-most rotor (III) by moving it up one row.
“Manual” Electricity

- Start at “E” on the right column.
- Trace through each rotor, matching like letters.
Rollover

- When the “notch” arrow reaches the window, move the wheel to its left up one row before encoding.
- When the center wheel arrow reaches the window, remember to move BOTH center and left wheels!
Breaking Enigma

- Bletchley Park, 1939
- Government Code & Cipher School created at
- British and French in 1939
- Poles (Rozycki, Zygalski, Rejewski) break the 3-rotor machine, 1932-1939
- Overwhelmed by 2 new rotors in 1938
- Poles hand over methods and machine copy to
- 1939
- Recruit math students at Poznan University, 1929
- Poles intercept commercial Enigma in the mail,

Recruit Math Students at Poznan University, 1929
Vulnerabilities

- Encryption of doubled indicators reveals information about rotor positions.
- Operators choose poor message keys (e.g., “BER”, “LIN”, “HIT”, “LER”, “JJJ”, “QWE”).
- Letter never encrypts to itself (allows known plaintext attack).
US Army, M-94 Cipher Device
US Army, M-209 (Hagelin)
Swiss, NEMA (New Machine)
Hagelin CX-52 RT (Random Tape)
Reihenschieber