Homework 6 – Problem 1

S-box 4 is observed to have the indicated output xor when presented with the indicated inputs:

- In1: 0x22, In2: 0x16, Output xor: 0x0c
- In1: 0x12, In2: 0x0c, Output xor: 0x05

Perform a differential cryptanalysis and produce the possible candidate key(s). You may find the tables provided in “DC.txt” helpful.
Consider the 2 round iterative differential characteristic for DES
0x19600000000000 → 0x19600000000000, p=1/234

Suppose for the following questions we can always find chosen plaintext
with S/N ratio high enough to require only 10 “right pairs” for a
successful differential cryptanalysis (“DC”).

a. On average, how many chosen plain ciphertext pairs are required for
a successful DC on two rounds?
b. On average, how many chosen plain ciphertext pairs are required for
a successful DC on ten rounds?
c. After how many rounds is DC impossible because there cannot
possibly be enough plain ciphertext pairs to succeed?
A certain cipher X with 6 bit key $k_1, k_2, k_3, k_4, k_5, k_6$ has 4 linear constraints.

Given the corresponding plaintext, ciphertext pairs and substituting the equations become:

\[
\begin{align*}
0 &= k_1 \oplus k_3 \oplus k_4 \\
0 &= k_4 \oplus k_5 \\
0 &= k_1 \oplus k_2 \\
1 &= k_1 \oplus k_6
\end{align*}
\]

Guessing k_1 and k_3 calculate k_2, k_4, k_5, k_6. How many encryptions are needed to discover the correct key with exhaustive search in the worst case?

How many are needed with these constraints?
Homework 6, problem 4

(A) Suppose the cipher \(C \) has a linear constraint (Equation 1) that holds with probability \(p = 0.75 \) where the input to \(C \) is plaintext bits \(i_1||i_2||\ldots||i_6 \); the output is the ciphertext bits \(o_1||o_2||\ldots||o_6 \) under key bits \(k_1||k_2||\ldots||k_6 \). The constants \(a_1, a_2, \ldots, a_6, b_1, b_2, \ldots, b_6, c_1, c_2, \ldots, c_6, d \) are all known.

Equation 1:
\[
\begin{align*}
\Delta & (a_1i_1 \oplus a_2i_2 \oplus a_3i_3 \oplus a_4i_4 \oplus a_5i_5 \oplus a_6i_6) \\
\Delta & (b_1o_1 \oplus b_2o_2 \oplus b_3o_3 \oplus b_4o_4 \oplus b_5o_5 \oplus b_6o_6) \\
\Delta & (c_1k_1 \oplus c_2k_2 \oplus c_3k_3 \oplus c_4k_4 \oplus c_5k_5 \oplus c_6k_6) \\
\Delta & d
\end{align*}
\]

Finally, suppose upon substituting values from 3 plaintext/ciphertext pairs the left hand side of equation 1 has values 1, 1, 0, respectively. What are the odds that \(c_1k_1 \oplus c_2k_2 \oplus c_3k_3 \oplus c_4k_4 \oplus c_5k_5 \oplus c_6k_6 \oplus d = 1 \) rather than 0?

(B) Suppose the same setup as in A but 3 out of 4 plaintext/ciphertext pairs “vote” that \(c_1k_1 \oplus c_2k_2 \oplus c_3k_3 \oplus c_4k_4 \oplus c_5k_5 \oplus c_6k_6 \oplus d = 1 \).

What are the odds that \(c_1k_1 \oplus c_2k_2 \oplus c_3k_3 \oplus c_4k_4 \oplus c_5k_5 \oplus c_6k_6 \oplus d = 1 \) rather than 0?
Homework 6, problem 4

(C) Constructing a multi-round constraint

Suppose X is a four round iterative cipher with plaintext input, P and
ciphertext output C where each round has 6 bit input I and 6 bit output
O and per round keys $K^{(1)}, K^{(2)}, \ldots K^{(6)}$. Using Matsui’s notation
suppose the constraints:

$I[1,2] \oplus O[3,4] = K^{(1)}[1,3]$ \hspace{1cm} R1

$I[3,4] \oplus O[1,5] = K^{(2)}[4,6]$ \hspace{1cm} R2

$I[1,5] \oplus O[1,6] = K^{(3)}[1,5]$ \hspace{1cm} R3

$I[1,6] \oplus O[2,5] = K^{(4)}[2]$ \hspace{1cm} R4

hold with probabilities $p_1 = .8$, $p_2 = .9$, $p_3 = .8$, $p_4 = .9$, respectively.

What is the probability that

$P[1,2] \oplus C[2,5] = K^{(1)}[1,3] \oplus K^{(2)}[4,6] \oplus K^{(3)}[1,5] \oplus K^{(4)}[2]$?
Homework 6, problem 4

(D) Suppose X is a multi round iterative cipher with 40 bit plaintext input, P, and ciphertext output, C, and 40 bit key. Suppose, using Matsui’s notation, that the following four linearly independent constraints:

i. $P[a_1(1), a_2(1), \ldots, a_{40}(1)] \oplus C[b_1(1), b_2(1), \ldots, b_{40}(1)] = K[c_1(1), c_2(1), \ldots, c_{40}(1)]$

ii. $P[a_1(2), a_2(2), \ldots, a_{40}(2)] \oplus C[b_1(2), b_2(2), \ldots, b_{40}(2)] = K[c_1(2), c_2(2), \ldots, c_{40}(2)]$

iii. $P[a_1(3), a_2(3), \ldots, a_{40}(3)] \oplus C[b_1(3), b_2(3), \ldots, b_{40}(3)] = K[c_1(3), c_2(3), \ldots, c_{40}(3)]$

iv. $P[a_1(4), a_2(4), \ldots, a_{40}(4)] \oplus C[b_1(4), b_2(4), \ldots, b_{40}(4)] = K[c_1(4), c_2(4), \ldots, c_{40}(4)]$

hold with probabilities $p_1 = .75$, $p_2 = .7$, $p_3 = .8$, $p_4 = .9$, respectively.

Suppose that on 10 plaintext/ciphertext pairs the LHS of i, ii, iii and iv “vote” that the RHS of the equations are 0 with tallies (2,8,2,8).

What is the probabilities that each of the most popular choices for the resulting constraints is correct? What is the probability that all 4 are correct? If all 4 are correct, and assuming X takes 1 microsecond/encrypt, what is the time to break X by exhaustive search (assuming a serial processor)? How about by applying the 4 constraints and searching for the remaining key bits (assuming a serial processor)?

PS: Key search is a “trivially parallelizable” operation.
Homework 6, problem 4

(E) In the lecture we noted that there was a linear attack that worked on 16 round DES with 2^{43} plaintext/ciphertext pairs where the basic constraint held with probability $p = ½ + \epsilon$ where $\epsilon = 1.19 \times 2^{-21}$ is the “bias”. Using this fact, estimate for what p, there are not enough corresponding plain/cipher texts to enable applying the Linear cryptanalysis to reduce the search keyspace.