
1

The Font Wars
James Shimada
December 6, 2006

In 1984, two years after John Warnock and Chuck Geschke left Xerox PARC to
form Adobe Corporation, the company introduced the PostScript page descrip-
tion language. By the late 1980s desktop publishing was in full swing and Post-
Script was a de facto standard in digital typography. While the PostScript lan-
guage specification was open and anyone could license an interpreter to build a
PostScript printer, Adobe held the secrets to the superior PostScript Type 1 font
format, making Adobe the single source of licensing high-end fonts. While some
companies were hard at work cracking the Type 1 format, Apple and Microsoft
formed an alliance to create an alternative to PostScript technology. The result-
ing product was TrueType, which was incorporated into both Mac OS System 7
and Windows 3.1. The two competing font standards were responsible for intense
rivalies, display incompatibilities, a proliferation of amateur fonts, and battles over
the loyalty of the design community. These events collectively became known as
the “Font Wars.”

2

Adobe PostScript
The Adobe PostScript technology was at the core of the Font Wars. PostScript is a
page description language that uses an interpreter to render the contents of a
printed page on a printing device or computer screen. It is also a full-fledged pro-
gramming language that describes a printed document, including fonts and for-
matting. All of the images on a printed page, including text, are specified by vec-
tor graphics – mathematical formulas consisting of straight lines and spline curves.
These formulas are then converted to the dots needed for digital output in a proc-
ess called rasterizing. A PostScript interpreter is able to rasterize on the fly, which
allows for a great deal of flexibility in terms of scaling, rotating and other trans-
formations suitable for the resolution of a particular output device. PostScript is
also device-independent, so it can be expected to run on a variety of printers and
output devices without modification. When Postscript was first released, in an ef-
fort to encourage support of the language, Adobe published the language specifi-
cation and licensed the PostScript interpreter to printer manufacturers that
wanted to build PostScript output devices.

The first Adobe Postscript manual was shipped to a potential customer in
March 1984, but the seeds of a graphical description language had taken root in
John Warnock’s mind several years earlier. In the early 1970s, Warnock worked
for the Evans and Sutherland Computer Corporation, which sold powerful cus-
tom graphics devices for real-time simulation, such as windshield graphics for
maritime and flight training. Warnock led their Mountain View, California re-
search office and was charged with developing a database system for their simula-
tion machines. Because, for a real-time application, it was unfeasible to store a
graphical representation of an environment as a series of bitmapped images,
Evans and Sutherland employed a graphics model based on line segments and
coordinate system transformations. By 1975, Warnock and company had com-
pleted the first version of the “Evans and Sutherland Design System,” a pro-
gramming language used to control the graphics model.

In 1978, Warnock joined Xerox PARC. At this time, Xerox was experi-
menting with a series of raster printers: the XGP, EARS and Dover. After the
headaches of converting software from one printer to the next, it became clear to
the researchers at PARC that application programs generating files destined for
the printer should not be tied to the properties of a specific printer device. The
company began working on a device-independent page description scheme called
the “Press” format. Warnock later merged Press with his work on graphics mod-
eling languages into a full-featured page description language he called “Inter-
press.” With Interpress, a printed page was described, not as a giant bitmap im-
age, but rather in terms of line segments, curves, and transformations. Warnock
and Chuck Geschke tried, unsuccessfully, for two years to convince Xerox to
make Interpress a commercial product. Xerox’s lack of support for Interpress en-
couraged Geschke and Warnock to start their own company, which they named
Adobe, after a creek that ran past Warnock’s garden in Los Altos, California.
(Cringley, 215)

3

PostScript was practically identical to Interpress, by comparison with other
page description schemes available at the time, but it actually removed some fea-
tures that Warnock had taken exception to during the development of Interpress.
At PARC, a lot of work had gone into deliberately restricting Interpress in order
to maintain page independence. Page independence is an important considera-
tion for performance, because it allows a printer to process a page before proc-
essing all the preceding pages, making it possible to print page 457 in a 500-page
document without having to process pages 1 through 456. Much to the chagrin of
Butler Lampson, the PARC researcher who contributed this feature of Interpress,
Warnock removed it from PostScript. Warnock favored more flexibility in the
PostScript language, making page independence impossible. Because the Post-
Script language was dynamic, or “wild and free” as Lampson described it, a given
page could not be printed until all the PostScript code on the previous pages had
been interpreted. Interestingly, Adobe’s PDF format – PostScript’s eventual suc-
cessor – would later tout page independence as an improvement over PostScript.
(Lampson)

The handling of fonts is one of the major challenges with a language de-
signed to describe the appearance of printed material. Like other graphical ob-
jects in PostScript, fonts faces were defined in terms of lines and spline curves.
Fonts represented in this manner are known as “outline fonts,” and they offer sig-
nificant advantages over bitmapped or “raster” fonts, which are essentially repre-
sented as a grid of pixels that are either on or off. One of the biggest advantages
of outline fonts is that only one outline per character is needed to produce all the
sizes of that character that one would ever need, rather than requiring a different
and unique font for each size of the same typeface. Scaling a font allows it to be
printed in a variety of sizes on a variety of output devices. But Fonts cannot sim-
ply be scaled linearly to a desired size because of the inherent approximations in-
volved in digital output. These problems are especially apparent at low resolu-
tions and small font sizes – with fewer dots available to draw letterforms, features
such as stem weights, crossbar widths, and serif detail can become inconsistent or
missed entirely. (Microsoft)

Because fonts required extra attention, a special language was used to de-
scribe a PostScript outline font, which was both a subset of and an extension to
the PostScript language specification. Certain extensions addressed the scaling
problem with “hints.” The hints were additional instructions stored with the font
outline that described certain guidelines the PostScript interpreter needed to
maintain at different sizes, which could include deliberately distorting the font
outline for the sake of appearance and legibility. With proper hinting, a font
looked correct and maintained its personality at all different sizes, and was able to
be output with high quality even at very small sizes or low resolution.

When PostScript was launched in 1984, the published language specifica-
tion included the details necessary for third parties to create fonts that could work
with the PostScript interpreter. This open font language specification was called
the “Type 3” font format. While they made use of much of the PostScript lan-
guage, Type 3 fonts contained no hinting mechanisms whatsoever. Adobe closely
guarded its technology for font hinting by compressing and encrypting the fonts
containing special hinting commands into what they called “Type 1” font format.

4

Anyone who wished to use the high-quality Type 1 fonts had to license them from
Adobe. Anyone (outside of a select group of font foundries who struck licensing
deals with Adobe) wishing to design their own PostScript fonts had to settle for the
inferior Type 3 format.

The Rise of Desktop Publishing
Up until the 1960s, most publishers used 19th-century technology to perform
typesetting. The Monotype was a mechanical typesetting system that used a key-
punch machine to produce a roll of punched paper tape. This roll was then fed
into a casting machine and, much like a scroll controls a player piano, the Mono-
type paper tape guided the machine to produce individual pieces of type from hot
molten lead. In the 1960s, new machines based on photography began to replace
the slow and expensive Monotype. These photo-typesetting machines also used a
mechanical keyboard to enter text and punch paper, however, in this case the pa-
per tape controlled a machine that exposed type onto light-sensitive paper using a
strobe behind a rotating film strip containing typefaces. The exposed photo paper
was then developed in a chemical processing machine to produce galleys.

With professional experience in both newspaper journalism and technol-
ogy, Paul Brainerd, the founder of Aldus, was in a unique position to revolutionize
the publishing process. He had already gained hands-on experience in phototype-
setting during his graduate work in journalism at the University of Minnesota. In
1975, Brainerd worked for the Minneapolis Star Tribune and later for Atex, a com-
pany that sought to automate the process of newspaper production with computer
technology. At Atex, Brainerd became involved with using software for prepress,
and wrote specifications for a word processing program. Kodak eventually ac-
quired Atex and closed the Redmond, Washington research and manufacturing
plant at which Brainerd had been working. Unwilling to take a Kodak job that
would have relocated him to Boston, Brainerd separated from Atex and started
his own company. He named it Aldus after the 16th-century Venetian scholar
and printer, Aldus Manutius, and he coined the term “desktop publishing” to de-
scribe his enterprise. (Wilma) In 1985, the same year that Apple launched the
LaserWriter printer, Aldus developed PageMaker software.

Steve Jobs also played a major role in the rise of Desktop publishing. He
was intent on bringing the PostScript printing technology to the personal com-
puter, even though due to the complexity involved in interpreting the PostScript
language, it may have been a more suitable printing technology for mainframes!
(Cringley 216) Jobs knew the LaserWriter could set Apple apart from the compe-
tition by showing that one could produce higher quality printed material with a
Macintosh than with any other personal computer available. The Hewlett Pack-
ard LaserJet had already been introduced in 1984, and it had set a new quality
standard for PC printers far superior to that of the dot matrix printers on the
market at that time. Documents produced by the HP LaserJet looked like they
came from a typewriter. But Jobs believed he could do even better, and that if he
could incorporate PostScript technology into the LaserWriter printer, Macintosh
users would be empowered to create documents that approached the quality of a
professional typesetter. (Carlton 111) In a grand display of confidence, Jobs in-

5

vested $2.5 million dollars in Adobe stock, acquiring 15% of the company.
(Cringley 220) Apple manufactured its LaserWriter with a built-in PostScript in-
terpreter licensed from Adobe. Ironically, both the LaserWriter and the LaserJet
were built on the Canon LBP-CX print engine, meaning that many of the com-
ponents for feeding paper and fusing the image were actually interchangeable. It
was Postscript that distinguished the LaserWriter from the LaserJet, which still
had an archaic printer control language. Fitting PostScript into the LaserWriter
provided great benefit, but also came at a significant cost. In order to support the
PostScript interpreter, the LaserWriter needed extra processing power in the form
of a 12Mhz Motorolla 68000 CPU, 512KB of RAM, and a 1MB frame buffer. At
the time of its release, the LaserWriter was the most powerful computer in Apple’s
entire lineup, and garnered a hefty price tag of $7000.

Now the only thing Apple and Adobe needed was a great application,
something compelling enough to convince a consumer to buy the whole system.
A good fiend of Brainerd, computer-typesetting consultant John Seybold, set up a
meeting between Apple and Aldus so they could discuss the opportunity of com-
bining the LaserWriter printer with PageMaker. The system rolled out in 1985
and the winning combination of PostScript, Macintosh, LaserWriter and Page-
Maker sparked the desktop publishing revolution. Decent quality print material
was easier than ever to produce, and at a reasonable price to the consumer. And
although early versions of PageMaker lacked some of the features needed to
emulate the craftsmanship of a true professional typesetter, the convenience,
power, and speed of desktop publishing tools were perceived as revolutionary.
Paul Andrews, a technology columnist for The Seattle Times, wrote in 1994 about
the emergence of desktop publishing, “To anyone who remembered the tedious
act of justifying columns in high school newspapers, of physically cutting and
pasting headlines or awkward pieces of type onto glue-smudged page dummies,
and of missing publication deadlines because the printer had four jobs ahead of
theirs, desktop publishing was an occupational epiphany. It gave control to the
creator of the document – control over the appearance, content, production and
timing of the entire publishing process.” (Andrews) It was a great time for every-
one involved. Aldus and Adobe went from mere startups to wealthy enterprises,
and Apple saved the Macintosh from lackluster sales and slipping market share.
(Malone 387) The remarkable cooperation between these three companies cre-
ated a win-win-win situation. The blissful alliance, however, would prove to be
short-lived. Tensions began to mount around PostScript licensing fees, and then
Microsoft entered the picture.

The Eruption of the Font Wars
Before long, PostScript was supported, not just on the LaserWriter, but also on
high-end imagesetting devices, making it the de facto standard document format
of desktop publishing, and giving Adobe a monopoly on the page description lan-
guage implemented by output devices. Adobe built an entire library of fonts with
outstanding type designs that were either licensed from original foundries or cre-
ated by well-known designers on staff such as Carol Twombly and Robert Slim-

6

back. The demand for Type 1 fonts was high, and soon Adobe was making $100
million a year in printer software and fonts licensing.

Meanwhile, personal computers had become more powerful, and the idea
of moving the PostScript interpreter from the printer to the host machine became
an exciting possibility. If the host machine could do the PostScript rasterization,
and send a large bitmap to the printer, then the laser printers wouldn’t need to be
powerful computers themselves. This would also simplify desktop publishing
software because it would allow the software to use one set of graphics routines to
draw to the printer or the screen. As long as the Postscript interpreter remained
in the printer, the user had to maintain one set of bitmap fonts for the screen and
a separate set of Type 1 outline fonts for the printer. Moving the PostScript inter-
preter to the host machine would simplify things for the user, who would only
need to maintain only one set of fonts. As less expensive laser printers were intro-
duced, licensing the PostScript interpreter became a sticking point. The fact that
PostScript was not resident on the host computer became a cost issue. (Tribble)

Adobe maintained an uncompromisingly technology-driven focus on its
products, even at the expense of its relationships with key partners. At one point
in 1985, Apple approached Adobe with some feature requests for the PostScript
interpreter in order to improve the performance in printing Macintosh bitmap
fonts. “They wanted to dump screens faster, and they wanted Apple-specific fea-
tures added to the printer,” Warnock explained to Robert Cringley. “Apple came
to me and said, ‘We want you to extend PostScript in a way that is proprietary to
Apple.’ I had to say no. What they asked would have destroyed the value of the
PostScript standard in the long term.” (Cringley 223) At that time, PostScript li-
cense fees from Apple accounted for a large portion of Adobe’s revenue, and in
this respect Warnock may have bitten the hand that fed him. In 1988, Microsoft
tried to strike a deal with Adobe, asking for a PostScript interpreter for the screen
that could be incorporated into the next version of Windows. The idea was that
Windows users would be able to see the exact same fonts on-screen that they
could print on a PostScript printer, a true WYSIWYG interface. The supposed
benefit for Adobe would be a spike in their business selling fonts, since native
PostScript support on Windows would dramatically increase their installed base.
Warnock again said no, losing the opportunity for a strategic partnership with Mi-
crosoft.

In response to the demand for users to be able to see PostScript Type 1
fonts on screen, Adobe came up with a product called Display PostScript. As the
name suggests, it was a system that interpreted PostScript to generate on-screen
graphics. Display PostScript was actually a joint venture between Adobe and
Steve Jobs’ NeXT Computer in which the development was done by NeXT, but
the product officially belonged to Adobe. NeXT used Display PostScript as a
foundation for the NeXTStep windowing system, and even introduced a laser
printer with no CPU since PostScript rasterization was handled entirely by the
operating system. Meanwhile, Adobe could license Display PostScript to third
parties at their discretion, and they did indeed attempt to license it to Microsoft
and Apple. (Cringley 227) For Adobe, Display PostScript was a double-edged
product. While moving the PostScript interpreter to the host computer had many
advantages, it also held the potential of diminishing Adobe’s business of selling

7

PostScript interpreters to printer manufacturers. Adobe proposed a steep licens-
ing fee for Display PostScript, but this time it was Apple and Microsoft that de-
clined: they had other ideas in mind.

Apple and Microsoft briefly put aside their already existing corporate ri-
valries, and formed a partnership to develop an alternative to PostScript. Apple
had been developing an outline font technology, code-named Bass because the
fonts were scale-able, (Kaasila) which would later be marketed as the product
called TrueType. While PostScript was originally created to be printer language,
TrueType was designed with the intention of using the host computer as the
rasterizer, and was particularly well suited for displaying fonts on a computer
screen. With the TrueType rasterizer built into a host computer’s operating sys-
tem, outline fonts could be rendered on-screen without any third-party software,
and could be printed on either a PostScript or non-PostScript printer. The
TrueType font format was compatible with, but not dependent upon the Post-
Script interpreter – fonts could either be rasterized before they were sent to the
PostScript interpreter, or the TrueType rasterizer itself could be sent to the Post-
Script interpreter as a PostScript program. With TrueType, users would only
have to maintain one set of outline fonts for both screen and printer, and desktop
publishing applications would be able to truly embrace the WYSIWYG concept.
As part of the partnership, Apple would allow Microsoft to use TrueType, and
Microsoft would give Apple a PostScript-compatible interpreter that it had ac-
quired from a developer named Cal Bauer. The coup d’etat to Adobe occurred at
the Seybold Desktop Publishing Conference in San Francisco on September 20,
1989, when Apple and Microsoft announced their strategic alliance. Bill Gates
declared that TrueType would be a new standard. John Warnock was distraught,
and when it came time for him to speak at the conference, he publicly accused
Microsoft and Apple of selling “snake oil.” (Carlton 114) A few days later, Apple
sold all of its Adobe shares for $89 million. While it was a profitable move for
Apple, it was also a deliberate and distinctive separation from Adobe. The Font
Wars had begun.

Even before the Seybold convention, however, Adobe was already starting
to feel pressure from other sources and its stronghold on printing was beginning to
be threatened. Bitstream, one of the oldest pure digital type foundries, founded in
Cambridge Massachusetts in 1981, was at that time on the verge of cracking the
encrypted Type 1 font format. Several developers were already selling PostScript
clones to low-end printer manufacturers. In 1990, after years of guarded secrecy
around the Type 1 font format, Adobe finally published the Type 1 specifications,
allowing anyone to build and sell the superior Type 1 fonts. Adobe switched di-
rections from trying to license Display Postscript, and announced a product called
Adobe Type Manager (ATM). As another system that could interpret PostScript
code to generate on-screen displays, ATM only worked for type, not arbitrary
vector graphics like Display PostScript. The key was that ATM was to be sold
directly to consumers so, without any assistance from Apple, Type 1 fonts would
be available on Apple computer screens.

Adobe announced ATM before the product existed. At the time of the
announcement, the Mac OS System 7 was not expected to be released for another
year and a half. The ATM announcement could be interpreted as an offensive

8

move to try and dissuade Apple from going the separate route with different dis-
play technology. If ATM could be expected to enjoy a good deal of market ac-
ceptance, then Apple wouldn’t need to go through the trouble of developing an
alternative font technology. (Cringley 227) On the other hand, the announcement
of ATM could be interpreted as a defensive move: if Apple was going part ways
with Adobe and pursue its alternative font technology, then at least by selling di-
rectly to consumers there would still be some chance that Type 1 fonts could make
their way to Mac computer screens. Either way, Adobe was on the hook for de-
livering ATM. The TrueType font format became an integral part of Mac OS
System 7 in 1991, and in Windows 3.1 in 1992.

Extensions of Type 1 and TrueType
Throughout the 1990s, Microsoft gradually improved its support for TrueType in
Windows. Many of the enhancements were geared toward improving the stability
and performance of the buggy TrueType rasterizer introduced in Windows 3.1,
but a notable TrueType enhancement came with Windows 95: font smoothing.
Font smoothing is an anti-aliasing technique that involves black, white, and three
intermediate shades of gray to smooth the edges of bitmap shapes, improving the
appearance on-screen while minimizing the blurriness that’s often found in anti-
aliased text.

Meanwhile, Apple and Adobe were much more ambitious in their plans to
take type display technologies to the next level. When Steve Jobs came back to
Apple from NeXT he brought his respect for John Warnock and his support for
PostScript back with him. As Apple acquired NeXT, they also got the Display
PostScript technology that NeXT had developed, and supported PostScript fonts
natively in the Mac OS. Driven by both “intense collaboration and intense ri-
valry,” Apple and Adobe continued to develop increasingly sophisticated type dis-
play technologies. (Tribble)

Apple’s TrueType GX fonts, later known as Apple Advanced Typogra-
phy, had advanced typographical features based on QuickDraw GX, an extensive
graphics library that became a core part of the Mac OS system. There were
many typographical enhancements in TrueType GX, including automatic liga-
tures, optical alignment, and “variations.” TrueType GX featured a strong dis-
tinction between semantic and stylistic qualities of glyphs and, as a result, auto-
matic common ligature substitutions could be made that didn’t affect the under-
lying character representations in the text. A ligature is two or more letters that
are joined into one character, such as fl. A common technique in typesetting
software had been to replace the two characters that needed to be joined with a
single, special ligature character. This technique had created problems because it
caused a change in semantics that prevented spell checking and text searching
tools from recognizing the ligature as two distinct characters. With TrueType
GX, extended information that facilitated automatic ligatures could be stored in
the font itself, without affecting the underlying semantics. Another advancement
in TrueType GX was the automatic optical alignment of text edges. Different
letterforms, even when precisely lined up on an edge, sometimes presented the
optical illusion that they were misaligned, due to the individual shapes. Automatic

9

alignment took this into account and provided edges that appeared flush to the
human eye. Outline font “variations” were another key advancement in
TrueType GX. Variations were a form of parameterized font outlines, an idea
proposed in 1982 by renowned computer scientist and digital typography pioneer,
Donald Knuth. (Knuth “Meta-Font”) Variations allowed for a single font specifi-
cation to adapt to parameters along a design axis, such as “weight” or “stem
width.” Using variations along the weight axis, for instance, a font developer
could parameterize a font outline to create a continuous range of weight instances
going from extra light, to light, to bold, to extra bold.

Adobe Multiple Masters was another technology that extended the Type 1
format to parameterize a font outline. Using Multiple Masters, two font outlines
were supplied for the opposite ends of a design axis. The font would be interpo-
lated across the axis and the designer could modify any of the in-between in-
stances as needed. A handful of axes were available to parameterize the outlines,
but Multiple Masters fonts would generally support one or two, such as weight,
width, or optical size. The reason Multiple Masters fonts typically only made use
of a small number of axes was that each axis required two font outlines for each
extreme, and therefore the number of font outlines the developer needed to pro-
duce increased quadratically with the number of axes. Multiple Masters fonts
never became very popular and by 1997, there were only about 36 such fonts on
the market, half of which were produced by Adobe. It often made more sense for
a font developer to release a font set as multiple Type 1 packages. An example of
this is the HTF Didot font by Hoefler & Frere-Jones, which is available in six de-
signs: light, medium, bold, light italic, medium italic and bold italic. Apple’s ex-
tension to TrueType was not met with much commercial success either.

Years earlier, when Donald Knuth developed the METAFONT language
he already understood some challenges with the acceptance of parametric outline
fonts like Type 1 Multiple Masters or TrueType GX. Knuth’s METAFONT
took parametric outlines to the extreme. His Computer Modern typeface was
built around more than 60 design axes. During the years he was devoted to digi-
tal typography he came to understand a key difference in the thought process type
designers and programmers seemed to employ when confronted with a problem.
Type designers traditionally worked with a fixed set of specifications to solve a
specific design problem. Computer programmers, on the other hand, were
unique in their ability to understand parameters, where the solution to a problem
could adapt to different sets of input. (Knuth “Lessons”) With outline fonts, a
typeface is actually a functioning computer program, rather than the artifact of a
particular design solution. Parametric outline fonts may be a natural extension to
the outline font as a program, but Knuth’s lessons learned from METAFONT
highlight a gap between program-oriented thinking and design-oriented thinking.
This gap undoubtedly contributed to the weak acceptance of Type 1 Multiple
Masters and TrueType GX at a time when the convergence between these two
cultures was relatively new.

10

Loyalties of the Design Community
Users went from having to purchase Type 1 fonts directly from Adobe to having
the ability to purchase fonts in several different formats and from various sources.
Major font foundries and professional designers, however, remained loyal to Type
1 fonts. The perception in the design community was that TrueType was an infe-
rior technology.

Ironically, TrueType offered advantages in its hinting features that would
have seemed to attract high-end font designers wanting fine-grained control over
the appearance of their fonts. TrueType allowed complete control over rasteriza-
tion, right down to pixel-by-pixel control on the bitmap grid, supporting instruc-
tions to move any part of the glyph’s outline as much as needed. This permitted
the glyph to completely change shape at different sizes, for the ultimate in design
flexibility. TrueType put the hinting intelligence in the fonts themselves rather
than in the rasterizer. This gave the font developer very fine-grained control over
the final appearance of the font, but it also meant that the bulk of the hinting cal-
culations took place during font development rather than at runtime. To take full
advantage of TrueType’s hinting power, a substantial amount of programming
was required. The expertise required to properly program the hints made it diffi-
cult to produce high-quality fonts and the TrueType font market became flooded
with amateurish fonts.

In fact, many of the first available TrueType fonts were actually PostScript
Type 1 fonts converted by automatic means to the TrueType format. Since the
hinting information did not translate directly across the two formats, these fonts
had hinting instructions that were inferior to their Type 1 copies. To make mat-
ters worse, fonts converted automatically from Type 1 to TrueType suffered be-
cause of different formulas used to define curves in the glyph outline – Type 1
used cubic bézier curves while TrueType used quadratic bézier curves. Although
the quadratic curve is technically a subset of the cubic curve, the conversions were
still imperfect due to small rounding errors. As a result, the first TrueType fonts
to hit the market were low quality imitations of existing PostScript fonts; hence,
the perception that TrueType was an inferior technology. (Phinney) With this
negative perception of TrueType fonts within the design community, the high-
quality tools that professional designers needed to actually harness the power of
TrueType’s hinting were very slow to reach the market. It wasn’t until 1997 with
the release of FontLab 3.0, that there were retail versions of font editing software
with native support for TrueType’s hinting and quadratic bézier curves.

TrueType and Type 1 highlight an issue that comes up repeatedly in
technology: the most powerful tools often require the most technical expertise to
master. TrueType was analogous to a low-level machine language, in contrast to
Type 1, which was like a declarative interpreted language. Type 1 hints are fairly
easy to understand – the font designer declares hints for certain qualities of a
glyph (such as vertical and horizontal guides, overshoots, stem snaps, equal count-
ers and shallow curves), and these specify general constraints to the PostScript in-
terpreter. The interpreter then uses special techniques for filling in the outline at
rasterization time. Type 1 hints do not specify exactly what pixels will be turned

11

on at the bitmap grid level, rather they tell the interpreter what features ought to
be controlled, and the interpreter uses its own intelligence to decide how to do it.

Microsoft Windows 3.1 had some flaws in its initial TrueType rasterizer
that not only contributed to the perception of TrueType as an inferior technology,
but also helped steer designers away from using Windows as a platform for typog-
raphy and graphic arts. In addition, Microsoft didn’t show enough interest in ty-
pographical tradition for designers to have confidence in Windows. When Micro-
soft standardized on TrueType in Windows 3.1, they needed a built-in sans-serif
font. Microsoft opted to go with Arial rather than Helvetica, in part because it
was cheaper and, in part, because they didn’t feel that their users would know the
difference. (Simonson) Arial had first appeared as a direct substitute for Helvetica
in a PostScript clone in the late 1980s. Since it was drawn to match the propor-
tions and weight of Helvetica, Arial could be automatically substituted on a Post-
Script output device when Helvetica was specified. At first glance, Arial looked
just like Helvetica, but there were in fact many differences between the fonts.
Details, such as the fact that Helvetica has a tail in its “a” and Arial does not, that
may have seemed trivial or arbitrary to a software company like Microsoft, were
important and noticeable to the design community. Helvetica had been the stan-
dard, ubiquitous corporate font since the 1970s. When the PostScript interpreter
came out in 1984, it included four basic built-in fonts and Helvetica was one of
them. Demonstrating respect for the integrity of type design, Adobe had licensed
all four fonts from the original foundries. When Microsoft chose Arial to show-
case in their software, designers interpreted this to mean that Microsoft didn’t care
about design details or typographical tradition. To the astute observer of type, it
was as if Microsoft needed a corporate spokesman and hired the stunt double of a
somewhat boring TV star. Apple, on the other hand, chose Helvetica when they
standardized on TrueType in System 7.0, and paid an appropriate licensing fee to
the original font foundry, Linotype. The design community remained loyal to
Apple. The perception of Windows as a business computer and the Mac as an
artist’s computer lasts to this day.

OpenType and the End of the Font Wars
By the mid-1990s, Microsoft and Adobe had strong incentives to make peace.
Windows was clearly dominating the personal computer market and Type 1 fonts
couldn’t be supported on-screen without installing ATM software. Without a
share in the Windows market, Adobe faced a great obstacle to selling Type 1 fonts
to a broad range of users. Microsoft was trying to gain credibility in the design
community. (Mendelson) The result of these converging interests was the Open-
Type initiative, which allowed TrueType and Type 1 formats to become inter-
changeable.

Announced in 1997, OpenType acted as an abstraction for both
TrueType and Type 1 fonts. It was a TrueType-like wrapper for each font for-
mat, which meant that OpenType fonts could be supported cross-platform and
applications no longer need to distinguish which type of font was actually in the
OpenType wrapper. With the release of Windows 2000 Professional, OpenType
was fully supported in Windows, and by 2002 Adobe finished converting its entire

12

font library to the OpenType format. With Apple’s 10.4 release of OS X, the
Mac, which had supported both TrueType and Type 1 for years, embraced
OpenType as well. In addition to compatibility, OpenType incorporated many
of the same advanced typographical features that had never made it to the main-
stream with Apple’s TrueType GX and Adobe’s Multiple Masters, such as auto-
matic ligatures, true small caps, parametric outlines, and even niceties like a “Qu”
where the tail of the “Q” extends below the “u”.

The OpenType initiative marked the official end of the Font Wars, but in
truth, the differences between font formats that had once been widely disparate,
had already started to blur as a result of the industry’s drive toward compatibility
and standards. A TrueType rasterizer had become a standard component of a
PostScript interpreter, and all the major operating systems supported all the major
font formats. Adobe licensed, at no charge, the source code used for its own
OpenType font development, which allowed third-party font editing applications
such as FontLab and FontMaster to add support for OpenType with relative ease.

Compatibility problems will always exist as long as different organizations
produce software on which data needs to be shared, but the issues of the present
day have become much more specific and advanced. It’s easy to take for granted
how something as fundamental to computing as displaying type can be accom-
plished so seamlessly across platforms. Considering the business and technical
issues involved in type display and the chaos of the Font Wars, this compatibility is
nothing less than a marvel.

Bibliography
Adobe Systems Incorporated. “Introduction to OpenType.” adobe.com. Novem-
ber, 2006. <http://www.adobe.com/type/opentype>

Adobe Systems Incorporated. Adobe Type 1 Font Format. New Jersey: Addison-
Wesley, 1990

Andrews, Paul. “A New Page: Mr. Desktop Publishing Embarks on His Post
Computer Existence.” The Seattle Times. July 17, 1994

Carlton, Jim. Apple: The Inside Story of Intrigue, Egomania, and Business Blun-
ders. New York: Random House, 1997

Cringely, Robert X. Accidental Empires: How the Boys of Silicon Valley Make
Their Millions, Battle Foreign Competition, and Still Can’t Get a Date. New
York: Harper Business, 1996

Kaasila, Sampo. Interview with Laurence Penney. truetype-typography.com.
October 1996

Knuth, Donald. “The Concept of a Meta-Font.” Digital Typography. Stanford:
CLSI Publications, 1999 [Originally published in Visible Language 16 (1982) 3-
27]

13

Knuth, Donald. “Lessons Learned from METAFONT.” Digital Typography.
Stanford: CLSI Publications, 1999 [Originally published in Visible Language 19
(1985) 35-53]

Lampson, Butler. “Xerox PARC, Workstations, and Distributed Computing.”
CSE P590A. University of Washington, Seattle, October 17, 2006

Malone, Michael. Infinite Loop. New York: Random House, 1999

Mendelson, Edward. “OpenType Ushers in New Era of Typography.” crea-
tivepro.com. June 20, 2000. November, 2006.
<http://www.creativepro.com/story/feature/6503.html>

Microsoft Corporation. “TrueType Hinting.” Microsoft Typography. June 1997.
November 2006
<http://www.microsoft.com/typography/TrueTypeHintingIntro.mspx>

Phinney, Thomas. “TrueType and Type 1: What’s the Difference?” The Font-
Site.com. October 1, 1997. November, 2006.
<http://www.fontsite.com/Pages/Features/T1vsTTa.html>

Simonson, Mark. “The Scourge of Arial.” Mark Simonson Studio. February
2001. November, 2006. <http://www.ms-studio.com/articles.html>

Thompson, R. Scott. Quartz 2D Graphics for Mac OS X® Developers. New Jer-
sey: Addison-Wesley, 2006

Tribble, Bud. “Macintosh software, from the original Mac to OS-X, and lever-
aging open source.” CSE P590A. University of Washington, Seattle, November
29, 2006

Wilma, David. “Paul Brainerd” HistoryLink.org Encyclopedia of Washington
State History. February 22, 2006. November 2006
<http://www.historylink.org/essays/output.cfm?file_id=7657>

Colophon
This Adobe PDF document was prepared using Microsoft Word on an Apple
computer with Mac OS X 10.4. The Monotype Baskerville font used was origi-
nally designed by John Baskerville in 1757. At the time, the stark contrast between
thick and thin elements of his letterforms was considered extreme and dismissed as
amateurish.

