Quantum Computing Problem Set 1

Author: Dave Bacon (Department of Computer Science & Engineering, University of Washington)
Due: July 6, 2005

Problem 1: A Qubit

The basic unit of quantum information is the qubit. In this problem we will discuss a single qubit system. You are given a qubit with a wave function given by \(|\psi\rangle = (\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}) |0\rangle + (\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}) |1\rangle \).

(a) What is the bra \(\langle \psi | \) corresponding to this state?

(b) Show that this state is a normalized wave function, that is \(\langle \psi | \psi \rangle = 1 \).

(c) If you measure this qubit in the computational basis \(|0\rangle, |1\rangle \), what are the probabilities of obtaining each of the two outcomes for this measurement?

(d) Define the two basis states \(|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \) and \(|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \). Calculate the inner product of these states with \(|\psi\rangle \). That is, find \(\langle +|\psi \rangle \) and \(\langle -|\psi \rangle \).

(e) Verify that \(|+\rangle \) and \(|-\rangle \) are orthogonal: \(\langle +|-\rangle = 0 \). Verify that \(|+\rangle \) and \(|-\rangle \) are also both properly normalized. In other words show that \(\langle +|+\rangle = \langle -|-\rangle = 1 \).

(f) Suppose we express \(|\psi\rangle \) in the \(|+\rangle \), \(|-\rangle \) basis as \(|\psi\rangle = \alpha |+\rangle + \beta |-\rangle \). Show that \(\alpha = \langle +|\psi \rangle \) and \(\beta = \langle -|\psi \rangle \). Hint: form the bracket \(\langle +|\psi \rangle \) and use the fact that \(|+\rangle \) and \(|-\rangle \) are orthogonal.

(g) Use the previous three parts to express \(|\psi\rangle \) as \(|\psi\rangle = \alpha |+\rangle + \beta |-\rangle \) but with complex numbers instead of \(\alpha \) and \(\beta \).

(h) If we measure the state \(|\psi\rangle \) in the \(|+\rangle \) and \(|-\rangle \) basis, what are the probabilities of obtaining each of these two outcomes?

Problem 2: Single Qubit Matrices

The basic manipulations of a qubit will be two by two matrices. In this problem we will become familiar a particular single qubit matrix.

(a) Let

\[
U = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix}
\]

Calculate the complex conjugate to \(U \): \(U^\dagger \). Your answer will be a two by two matrix.

(b) Calculate the adjoint to \(U \): \(U^\dagger \). Again your answer will be a two by two matrix.

(c) Verify that \(U \) is unitary. That is, show that \(UU^\dagger = I \). This means that \(U \) is a valid quantum evolution.

(d) If we apply the evolution corresponding to \(U \) to \(|\psi\rangle \), our new state is \(|\psi'\rangle = U|\psi\rangle \). What is \(|\psi'\rangle \) if \(|\psi\rangle = (\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}) |0\rangle + (\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}) |1\rangle \)?

(e) Calculate \(U^2 \) and \(U^4 \). One of these should be negative the identity matrix.

(f) Suppose we apply the evolution corresponding to \(U \) twice to a qubit with the wave function \(|\psi\rangle = (\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}) |0\rangle + (\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}) |1\rangle \). What is the state after this application?

(g) Recall that the Pauli matrices are the following two by two matrices:

\[
\sigma_0 = I = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}, \quad \sigma_1 = X = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}, \quad \sigma_2 = Y = \begin{bmatrix}
0 & -i \\
i & 0
\end{bmatrix}, \quad \text{and,} \quad \sigma_3 = Z = \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\]

Express \(U \) as a linear combination of these matrices. That is, express \(U \) as

\[
U = s_0 \sigma_0 + s_1 \sigma_1 + s_2 \sigma_2 + s_3 \sigma_3
\]

for specific, complex \(s_i \)'s.

(h) Calculate \(UU^\dagger \). Your answer will be a two by two matrix. In particular it will be equal to one of the Pauli matrices.

Due: July 6, 2005