Accountability and Freedom

Butler Lampson
Microsoft
October 27, 2005
Real-World Security

• It’s about risk, locks, and deterrence.
 – Risk management: cost of security < expected loss
 – Perfect security costs way too much
 – Locks good enough that bad guys break in rarely
 – Bad guys get caught and punished enough to be deterred, so police / courts must be good enough.
 – Can recover from damage at an acceptable cost.

• Internet security similar, but little accountability
 – Can’t identify the bad guys, so can’t deter them
Causes of Security Problems

• Exploitable bugs
• Bad configuration
 – TCB: Everything that security depends on
 Hardware, software, and **configuration**
 – Does formal policy say what I mean?
 • Can I understand it? Can I manage it?

• Why least privilege doesn’t work
 – Too complicated, can’t manage it

The unavoidable price of reliability is simplicity
—Hoare
The Access Control Model

1. **Isolation Boundary**: I am isolated if anything that goes wrong is my (program’s) fault

2. **Access Control** for channel traffic

3. **Policy** management

Diagram:*
- **Principal**
- **Object**
- **Reference monitor**
- **Guard**
- **Policy**
- **Audit log**

Connections:
- Authentication
- Authorization

Annotations:
- 1. Isolation boundary
- 2. Access control
- 3. Policy
Access Control Mechanisms: The Gold Standard

- **Authenticate** principals: Who made a request
 - Mainly people, but also channels, servers, programs (encryption implements channels, so key is a principal)

- **Authorize** access: Who is trusted with a resource
 - *Group* principals or resources, to simplify management
 - Can define by a property, e.g. “type-safe” or “safe for scripting”

- **Audit**: Who did what when?

 - **Lock** = **Authenticate** + **Authorize**
 - **Deter** = **Authenticate** + **Audit**
Making Isolation Work

• Isolation is imperfect: Can’t get rid of bugs
 – TCB = 10-50 M lines of code
 – Customers want features more than correctness
• Instead, don’t tickle them.
• How? Reject bad inputs
 – Code: don’t run or restrict severely
 – Communication: reject or restrict severely
 • Especially web sites
 – Data: don’t send; don’t accept if complex
Bad = Unaccountable

- Can’t identify bad guys, so can’t deter them
- Fix? End nodes enforce accountability
 - Refuse inputs that aren’t accountable enough
 - or strongly isolate those inputs
 - Senders are accountable if you can punish them
 - *All trust is local*
- Need an ecosystem for
 - Senders becoming accountable
 - Receivers demanding accountability
 - Third party intermediaries
- To stop DDOS attacks, ISPs must play
For Accountability To Work

• Senders must be able to make themselves accountable
 – This means pledging something of value
 • Friendship
 • Reputation
 • Money
 • ...

• Receivers must be able to check accountability
 – Specify what is accountable enough
 – Verify sender’s evidence of accountability
Accountability vs. Access Control

• “In principle” there is no difference but
• Accountability is about punishment, not locks – Hence audit is critical
• Accountability is very coarse-grained
The Accountability Ecosystem

- Identity, reputation, and indirection services
- Mechanisms to establish trust relationships
 - Person to person and person to organization
- A flexible, simple user model for identity
- Stronger user authentication
 - Smart card, cell phone, biometrics
- Application identity: signing, reputation
Accountable Internet Access

• Just enough to block DDoS attacks
• Need ISPs to play. Why should they?
 – Servers demand it; clients don’t get locked out
 – Regulation?

• A server asks its ISP to block some IP addresses
• ISPs propagate such requests to peers or clients
 – Probably must be based on IP address
 – Perhaps some signing scheme to traverse unreliable intermediaries?
• High priority packets can get through
Accountability vs. Freedom

• Partition world into two parts:
 – Green Safer/accountable
 – Red Less safe/unaccountable

• Two aspects, mostly orthogonal
 – User Experience
 – Isolation mechanism
 • Separate hardware with air gap
 • VM
 • Process isolation
Without R|G: Today

- Less trustworthy
 - Less accountable entities

- More trustworthy
 - More accountable entities

N attacks/yr

(N >> m)

m attacks/yr

My Computer

- Less valuable assets
- More valuable assets

Total: N+m attacks/yr on all assets

Entities
- Programs
- Network hosts
- Administrators
With R|G

N attacks/yr on less valuable assets

(My Red Computer)

Less trustworthy
Less accountable entities

Less valuable assets

M attacks/yr on more valuable assets

(My Green Computer)

More trustworthy
More accountable entities

More valuable assets

(N >> m)

Entities
- Programs
- Network hosts
- Administrators
Must Get Configuration Right

- Keep valuable stuff out of red
- Keep hostile agents out of green

Less trustworthy
Less accountable entities

More trustworthy
More accountable entities

My Red Computer
- Valuable Asset
- Less valuable assets

My Green Computer
- More valuable assets
- Hostile agent
Why R|G?

• Problems:
 – Any OS will always be exploitable
 • The richer the OS, the more bugs
 – Need internet access to get work done, have fun
 • The internet is full of bad guys

• Solution: Isolated work environments:
 – Green: important assets, only talk to good guys
 • Don’t tickle the bugs, by restricting inputs
 – Red: less important assets, talk to anybody
 • Blow away broken systems

• Good guys: more trustworthy / accountable
 – Bad guys: less trustworthy or less accountable
Configuring Green

• Green = locked down = only whitelist inputs
• Requires professional management
 – Few users can make these decisions
 – Avoid “click OK to proceed”
• To escape, use Red
 – Today almost all machines are Red
R|G User Model Dilemma

• People don’t want complete isolation
 – They want to:
 • Cut/paste, drag/drop
 • Share parts of the file system
 • Share the screen
 • Administer one machine, not multiple
 • …

• But more integration can weaken isolation
 – Add bugs
 – Compromise security
Data Transfer

• Mediates data transfer between machines
 – Drag / drop, Cut / paste, Shared folders

• Problems
 – Red → Green : Malware entering
 – Green → Red : Information leaking

• Possible policy
 – Allowed transfers (configurable). Examples:
 • No transfer of “.exe” from R to G
 • Only transfer ASCII text from R to G
 – Non-spoofable user intent; warning dialogs
 – Auditing
 • Synchronous virus checker; third party hooks, ...
Where Should Email/IM Run?

• As productivity applications, they must be well integrated in the work environment (green)

• Threats—A tunnel from the bad guys
 – Executable attachments
 – Exploits of complicated data formats

• Choices
 – Run two copies, one in Green and one in Red
 – Run in Green and mitigate threats
 • Green platform does not execute arbitrary programs
 • Green apps are conservative in the file formats they accept
 – Route messages to appropriate machine
R|G and Enterprise Networks

- Red and green networks are defined as today:
 - IPSEC
 - Guest firewall
 - Proxy settings
 - ...

- The VMM can act as a router
 - E.g. red only talks to the proxy
Summary

• Security is about risk management
 – Cost of security < expected loss

• Security relies on deterrence more than locks
 – Deterrence requires the threat of punishment
 – This requires accountability

• Accountability needs an ecosystem
 – Senders becoming accountable
 – Receivers verifying accountability

• Accountability limits freedom
 – Beat this by partitioning: red | green
 – Don’t tickle bugs in green, dispose of red