
1

CSEP590 – Model Checking
and Software Verification

University of Washington
Department of Computer Science

and Engineering
Summer 2003

Administration
� Instructor

� David Richardson (daverich@cs)
� Office: Sieg C112
� Office hours: After class on Wed.

� TA
� Evan Wellbourne (evan@cs)

� Office: ??
� Office hours: TBD

2

Administration(2)
� Class Time

� Wednesday, 6:30-9:20pm
� EE1-037 (this may change…)
� Format

� 80 min lecture, 20 min break, 80 min lecture, 10 min
open questions.

� Web: http://www.cs.washington.edu/csep590
� Be sure to signup for the csep590 mailing list

(see web for details)

Course Work
� Your grade will be based on the

following
� Weekly homework assignments (some may

be biweekly and more project-based)
� Final Exam (last day of class)
� Other?? A few paper reviews

3

What is Model Checking?

Unfortunately, no….

This kind of model??

What is Model Checking?(2)
� Model checking is an automatic verification technique

for finite state concurrent systems.
� Set of components that execute together

� Developed independently by Clarke and Emerson and
by Queille and Sifakis in early 1980’s.

� Protocols (digital circuits, more recently software)
modeled as state-transition systems.

� Specifications are a formula f in propositional
temporal logic.

� Verification procedure: exhaustive (but efficient)
search of the state space of the design to see if
model satisfies f.

4

A Small Example
� Consider a system: simple microwave

oven
� States of the system correspond to values

of 3 boolean variables:
� Either door is closed or not closed
� Either microwave is running or it is stopped
� Either the food in the microwave is warm or it

is cold

A Small Example(2)
� Model microwave as a simple transition

system
~running
~closed
~hot

running
closed
~hot

running
closed
hot

~running
closed
hot

5

A Small Example(3)
� Using Temporal Logic, one can say

� Specification: microwave doesn’t heat the food up
until the door is closed

� => ~hot holds until closed
� Formula f = (~hot) U closed

� Given f and model, model checking can
return whether or not the model satisfies f

� If not, a counterexample is returned, showing
a path of execution whereby the system fails
to satisfy the formula

A Small Example(4)
� Clearly, this example is too basic to be

of any use
� However, the general idea remains the

same

6

Advantages of Model Checking
� No proofs (as with theorem provers or proof

checkers)
� Procedure is completely automatic.
� Fast (linear in size of model and in size of

specification)
� Counterexamples
� Partial specifications allowed
� Logic is very expressive: allows for easy

modeling of real-world protocols

Disadvantages of Model
Checking
� State explosion: if modeled system has

many components that can transition in
parallel.
� => number of states can grow

exponentially with number of processes
(size of system)

� Data paths
� Variables in the model can take on a

potentially infinite number of values

7

Can this problem be fixed?
� Much work has been done recently

� 1987: Ken McMillan developed a symbolic model
checking approach where the system was
represented using Binary Decision Diagrams
� Data structure for representing boolean functions
� Concise representations for transition systems, fast

manipulation
� Good for synchronous systems

� Partial Order Reduction: reduce number of states
that must be explicitly enumerated
� Good for asynchronous systems

� Other techniques (we’ll see some later in
course)

Today’s Model Checkers
� Can handle systems with between 100

and 300 state variables
� Systems with 10120 reachable states

have been checked!
� Using appropriate abstraction

techniques, systems with an essentially
unbounded number of states can be
checked

8

A Brief History of Automatic
Verification
� Goal: automatic verification of systems
� In the beginning….there were just

input-output systems
� Correctness: partial correctness +

termination
� Semantics: input-output relation
� Specification language: propositional logic

History(2)
� In the late 1960’s – Reactive systems

� Don’t compute anything
� React to user input, don’t terminate (event loop)

� Termination can be bad! - Deadlock

� Correctness: safety + progress + fairness +…
� Semantics: Kripke Structures, transition systems

(~automata)
� Specification language: temporal logic

9

History(3)
� Temporal logic

� Formalized in early 20th Century
� Primitives: always, sometimes, until,

since…
� 1977: Pnueli decides to use temporal logic

as a specification language
� System satisfying a property corresponds to

Kripke structure being a model of temporal
formula

History(4)
� How automate?

� Given a reactive system S and a temporal formula
f, give an algorithm to determine if S satisfies f.

� Late 1970’s, early 1980’s: reduced to proof
systems
� Give a proof system for checking validity in the logic
� Extract from S a set of formulas F
� Prove that F Æ f is valid using proof system
� Doesn’t work, too expensive.

10

History(5)
� Early 1980’s: reduction to model

checking problem
� Construct Kripke structure K of S
� Check if K is a model of f

� As we saw, the problem is state
explosion (but people are making it
better all the time)

History(6)
� 1990’s – present

� Industrial applications
� Success in hardware verification
� Groups in all major companies (IBM, Lucent, Intel,

Microsoft, Motorola, Siemens…)
� Many commercial and non-commercial tools
� Extensions into software systems!! (holy grail)

� As leading professionals in top industries, this
topic should hopefully be interesting to you ☺

11

History(7)
� A few success stories

� 1992 – SMV system at CMU used to verify the
IEEE Future+ cache coherence protocol
� Found actual errors in an IEEE standard!

� 1995 – Concurrency Workbench analyzed active
structural control system to make buildings more
resistent to earthquakes
� Timing error found that could cause controller to worsen,

NOT dampen vibrations experienced during an
earthquake

� And there are many, many others for hardware
and protocol verification

Software Verification
� Why is this so freaking hard??

� Data
� Asynchronous behavior
� Hmmm, this smells a lot like the halting

problem….?

� Nonetheless, we’ll examine it in the
course

12

Software Verification(2)
� What is being done?

� Use partial order reduction to reduce the number
of states that are generated
� Used by VeriSoft
� Applications to Java

� Use static analysis to extract a finite state
synchronization skeleton from the program, model
check the result
� Bandera – Kansas State
� Java PathFinder – NASA Ames
� Slam Project (Bebop) - Microsoft

