
1

CSEP590 – Model Checking and
Automated Verification

Lecture outline for August 6, 2003

2

-First, we’ll discuss Abstraction Techniques from the last lecture…
-Today, we’ll be primarily concerned with discussing the model
checker SPIN, and if time permits, the very interesting Bandera
system for Java
-SPIN

-Developed by G.J. Holzmann at Bell Labs
-It is the topic of an annual workshop since 1995
-Designed for the simulation and verification of distributed
algorithms, focusing on asynchronous control in software systems

-Different than other approaches (synchronized hardware
systems)

-Systems are described in the Promela modeling language
-Allows for describing each process in the system + the
interactions between processes
-Communication: processes use FIFO comm. Channels,
shared variables, rendez-vous comm. (see manual for this)

3

-The models are bounded and have countably many distinct
behaviors

-=> correctness properties are formally decidable, subject to
constraints of computational resources (time, memory)
-SPIN seeks to address some of these constraints, how do you
deal with them?

-We’ll see a diagram in class of the basic SPIN architecture
-Why is compilation used?

-Allows for generation of highly optimized models,
specific to property

-SPIN framework
-Models specified in Promela

-Process templates + instantiation of processes
-Templates define process behavior

-Templates translated into a finite automaton
-Global behavior of system created by computing an
asynchronous interleaving product of automata, 1
automata per process behavior

4

-Global system: represented by automaton (state space of
system, or reachability graph of system)

-LTL formula specs translated in a Buchi automaton
-Computes asynchronous product of Buchi automaton and
global automaton to get another Buchi automaton, B
-If language accepted by B is empty +> original spec claim
is not satisfied for given system. Nonempty => B contains
all behaviors that satisfy spec

-However, size of global reachability graph can grow
exponentially with # of processes

-SPIN uses complexity management techniques to
solve/help

-What are Buchi automata? A quick defn…
-Variant of an NFA for processing words of infinite length
-Accepts a string iff execution of automaton goes thru an
accepting state infinite # of times while processing the string
-Automata generated formally accept only those infinite system
executions that satisfy the corresponding LTL formula

5

-SPIN uses a nested depth-first search technique to look for these
acceptance cycles in the automata

-LTL formula’s are specified in Promela according to the following
grammar:

-f = p | true | false | (f) | f binop f | unop f
-unop = [] (always), <> (eventually), ! (negation)
-binop = U (until), && (and), || (or), -> (implies), <-> (equiv)

-Ex: [](pUq) means “always guaranteed that p is true until at least
q is true”

-Partial Order Reduction
-SPIN uses this method to reduce the # of reachable states that
must be explored to complete a verification
-Reduction: based on the fact that the validity of a LTL formula is
often insensitive to the order in which concurrent and
independently executed events are interleaved in the depth-first
search

6

-Thus, we can generate a reduced state space with representative
classes of execution sequences => collapse equivalent sequence
orderings!

-What about memory management in SPIN?
-The size of interleaving processes is worst case exponential in the
of processes
-How fix?

-1) state compression – new method added in 1995 allows for
a 60-80% memory reduction in practice with only a 10-20%
increase in CPU time
-2) bit-state hashing – 2 bits of memory are used to store a
reachable state. Bit addresses are computed using 2
statistically independent hash functions

-Good for when exhaustive verification isn’t possible but
you still want a good approximation

7

-Let’s discuss the Promela language syntax and semantics
-Refer to the Promela language manual for this part of the lecture

-Now, we’ll see a SPIN demo, highlighting the main features of the
software and showing a number of demo verifications

-This should be enough to get you familiar with SPIN to be able
to use it on the next problem set

-If time permits, we will discuss Bandera next
-Bandera

-Seeks to bridge the gap between research and practice in model
checking software
-Integrated collection of program analysis and transformation
components enabling automatic extraction of safe, compact
finite-state models from program source code (Java)
-From Java code SMV or SPIN model, then map verifier
output back to the Java source code
-Why is this a good idea?

8

-Alleviates the need to construct models by hand
-Has optimizations to deal with state space explosion problem
automatically

-Bandera philosophy
-1) reuse existing checking technologies
-2) automated abstractions
-3) customize model based on spec/property
-4) open design for ease of extensibility
-5) integration with existing software testing/debugging
techniques

-What techniques does Bandera use to build tractable models
from software?

-1) irrelevant component elimination
-Many program components (classes, threads, vars, code)
might be irrelevant to the property being verified
-Ex: clicking on a menu brings up a certain dialog box is
independent of application code

9

-2) Data abstraction
-Vars may record more detail than necessary for
property being tested
-Ex: items in a vector, but if property is only concerned
with the existence of a certain item in the vector, then the
of vector states can be abstracted to just 2:
{ItemInVec, ItemNotInVec}

-3) Component Restriction
-If 1) and 2) fail, create a restricted model

-Limit # of components, limit range of vars
-Idea: many design errors are manifest in small versions
of a system => can still be useful for find errors in the
actual system

-How does Bandera do it though?
-Uses slicing to automate irrelevant component elimination
-Abstract interpretation module for data abstraction
-Model generator with built-in flexibility

10

-Data structures for mapping between model checker error
traces and the original source code + a graphical tool for
navigating these traces
-Includes a menu-driven library for helping the user to create
logic specifications
-Irrelevant components are sliced away from the program
-Data abstractions are applied on the remaining model
-The back-end generates a SPIN or SMV model
-The translator maps back from the verifier to the source
code

-What’s a slicer?
-Given a program P and program statements C = {s1…sk} of
interest from P called the slicing criterion, the slicer
computes a reduced version of P by removing statements of
P that do not affect computation of the criterion statements C
-Bandera slices to remove statements that do not affect the
satisfaction of the given property φ

11

-Recent work has shown that slicing criterion can be based
only on the primitive properties in φ
-Slicers are hard to build, especially for Java’s concurrency
model!

-Bandera’s Abstraction-Based Specializer (BABS)
-Automates the model reduction via data abstraction
-Useful when the specification depends only on the
properties of data values, NOT the actual concrete data
values themselves
-User can guide abstractions as well with built in libraries
and a user input mode

	CSEP590 – Model Checking and Automated Verification

