CSEP590 – Model Checking and Automated Verification

Lecture outline for July 9, 2003

- Formal Verification is composed of 3 steps:
 - 1) a framework for modelling the system (last time)
 - 2) a specification language to describe properties to be verified
 - 3) a verification method to establish if system satisfies specs
- We use a model-based approach. Given a formula ϕ and model M of system, determine if M satisfies ϕ (denoted as $M \models \phi$)
- Specifications written in Temporal Logic
 - formula isn’t statically true/false in model
 - dynamic notion of truth
 - classified according to view of time:
 - linear-time vs. branching time
 - discrete vs. continuous time
- We will study CTL (computation tree logic) – branching-time + discrete
-CTL formulas are defined inductively in Backus-Naur form (BNF)

-Set of atomic propositions AP, where $p \in \text{AP}$

-CTL formula ϕ: $$\bot | T | p | (\neg \phi) | (\phi \land \phi) | (\phi \lor \phi) | (\phi \rightarrow \phi) | AX \phi | EX \phi | A[\phi U \phi] | E[\phi U \phi] | AG \phi | EG \phi | AF \phi | EF \phi$$

-Thus, we have new logical connectives

-AX, EX, AG, EG, AU, EU, AF, EF are temporal connectives

-come in pairs: path quantifier + temporal operator

-path quantifiers: $A =$ “along all paths”, $E =$ “along some path”

-Temporal operators: $X =$ next state, $F =$ some future state, $G =$ all future states (globally), $U =$ until.

-Ex: EU is actually $E[\phi, U \phi_2]$. EU and AU are binary operators.

-Notions of well-formed CTL formulas and not well-formed formulas.

-Well-formed include: EGr, $AG(q \rightarrow EGr)$…

-Not well-formed include: FGr, $EF(rUq)$, $A \neg G \neg p$,…

-Can write out parse trees for well-formed CTL formulas

-Definition: a subformula of a CTL formula ϕ is any formula ψ whose parse tree is a subtree of ϕ’s parse tree.

-Semantics of CTL:

-Given a model M of our system, we denote $M,s \models \phi$ to mean that in state s of M, ϕ holds. Let S denote states of M.

-\models is called satisfaction relation. Defined using structural induction on all CTL formulas:

-1) $M,s \models T$ and $M,s \models \bot$ for all $s \in S$.

-2) $M,s \models p$ iff $p \in L(s)$

-3) $M,s \models \neg \phi$ iff $M,s \not\models \phi$

-4) $M,s \models \phi_1 \land \phi_2$ iff $M,s \models \phi_1$ and $M,s \models \phi_2$

-5) $M,s \models \phi_1 \lor \phi_2$ iff $M,s \models \phi_1$ or $M,s \models \phi_2$

-6) $M,s \models \phi_1 \rightarrow \phi_2$ iff $M,s \not\models \phi_1$ or $M,s \models \phi_2$

-7) $M,s \models AX \phi$ iff for all s_1 s.t. $s \rightarrow s_1$ is a transition, we have $M,s_1 \models \phi$.

-8) $M,s \models EX \phi$ iff for some s_1 s.t. $s \rightarrow s_1$ is a transition, we have $M,s_1 \models \phi$

-9) $M,s \models AG \phi$ iff for all paths $s_1 \rightarrow s_2 \rightarrow \ldots$ where $s_1 = s$, and all for all s_i along the path we have $M,s_i \models \phi$

-10) $M,s \models EG \phi$ iff there exists some path $s_1 \rightarrow s_2 \rightarrow \ldots$ where $s_1 = s$, and for all s_i along the path we have $M,s_i \models \phi$

-11) $M,s \models AF \phi$ iff for all paths $s_1 \rightarrow s_2 \rightarrow \ldots$ where $s_1 = s$, there is some s_i on the path s.t. $M,s_i \models \phi$

-12) $M,s \models EF \phi$ iff there exists a path $s_1 \rightarrow s_2 \rightarrow \ldots$ where $s_1 = s$, there is some s_i on the path s.t. $M,s_i \models \phi$

-13) $M,s \models A[\phi_1 U \phi_2]$ iff for all paths $s_1 \rightarrow s_2 \rightarrow \ldots$ where $s_1 = s$, the path satisfies $\phi_1 U \phi_2$, i.e., there is some s_i on the path s.t. $M,s_i \models \phi_2$ holds and for each $j < i$, we have $M,s_j \models \phi_1$

-14) $M,s \models E[\phi_1 U \phi_2]$ iff there is some path $s_1 \rightarrow s_2 \rightarrow \ldots$ where $s_1 = s$, the path satisfies $\phi_1 U \phi_2$, i.e., there is some s_i on the path s.t. $M,s_i \models \phi_2$ holds and for each $j < i$, we have $M,s_j \models \phi_i$

What kind of relevant properties can we check with CTL formulas?

- We’ll see some examples in class

- Classical hierarchical classification of verification goals
 - Reachability property – some situation can be reached
 - Ex: “we can enter a critical section”
 - Specified in CTL using the EF operator (EFcrit_sec)
 - Safety property – under certain conditions, something never occurs
 - Ex: “both processes will never be in their critical sections simultaneously”
 - Specified in CTL using the AG, U, or W (weak until) operators
 - Liveness property – under certain conditions, something will ultimately occur
 - Ex: “any request will ultimately be satisfied”, “the light will turn green”
 - Tricky to specify, 2 broad families: progress and fairness
-Is liveness even useful? – no bound on notion of when!
-Fairness property – under certain conditions, something will (or will not) occur infinitely often
-Ex: “if access to a critical section is infinitely often requested, then access will be granted infinitely often” – notion of no starvation
-Lots of work in the 1980’s. We will discuss it later because it is non-trivial.

-Important equivalences between CTL formulas
-Definition: 2 CTL formulas ϕ and ψ are semantically equivalent if any state in any model which satisfies one of them also satisfies the other. Denoted as $\phi \equiv \psi$.
-We will see some useful ones in lecture
-Equivalences also lead to functionally complete sets for CTL (called adequate sets). One useful set for CTL is
{AU,EU,EX,¬,∧,⊥}

-Now, we develop of model checking algorithm to automatically determine whether $M,s \models \phi$
-Algorithm returns all states s of M which satisfy ϕ
-Routine TRANSLATE(ϕ): pre-processes ϕ to rewrite ϕ in terms of adequate set given above
-Label states of M with subformulas of ϕ satisfied at that state starting with smallest subformulas and working outwards to ϕ
-Suppose ψ is a subformula of ϕ and states satisfying all immediate subformulas of ψ have been labeled
-Use case analysis to label states with ψ:
-If ψ is:
 - \bot: no states are labeled with \bot
 - p: label s with p if $p \in L(s)$
 - $\psi_1 \land \psi_2$: label s with $\psi_1 \land \psi_2$ if s is already labeled with both ψ_1 and ψ_2
 - $\neg \psi_1$: label s with ψ_1 if s is not already labeled with ψ_1
-AF ψ_1:
 - If any state s is labeled with ψ_1, label it with AF ψ_1
 - Repeat: until no change, label any state with AF ψ_1 if all successor states are labeled with AF ψ_1

-E[$\psi_1 U \psi_2$]:
 - If any state is labeled with ψ_2, label it with E[$\psi_1 U \psi_2$]
 - Repeat: until no change, label any state with E[$\psi_1 U \psi_2$] if it is labeled with ψ_1 and at least 1 successor is labeled with E[$\psi_1 U \psi_2$]

-EX ψ_1: label any state with EX ψ_1 if one of its successors is labeled with ψ_1

-Finally, just output all states labeled with ϕ and we are done!

-Complexity? = $O(f*V*(V+E))$ where f = # of connectives in ϕ, V = # of states in M, E = # of transitions in M

 => linear in formula size, quadratic in model size

-Is there a faster way? Yes!
 - Handle EG and AG directly:
 -EG ψ_1:
 - Label all states with EGψ_1
 - If any state is not labeled with ψ_1, delete label EGψ_1
 - Repeat: until no change, delete label EGψ_1 from any state if none of its successors are labeled with EGψ_1

 -Turns out, there is even a more cleverer way of handling EG (in book). Using adequate set of {EX,EU,EG,\neg,\wedge,\bot} one can achieve a complexity of $O(f*(V+E))$ => linear in both the size of the formula and the model!

-NEXT LECTURE: briefly touch on other temporal logics (LTL, CTL*), symbolic model checking, fairness, and our first real system: SMV