
1

1

CSEP590 – Model Checking and
Automated Verification

Lecture outline for July 9, 2003

2

-Formal Verification is composed of 3 steps:
-1) a framework for modelling the system (last time)
-2) a specification language to describe properties to be verified
-3) a verification method to establish if system satisfies specs

-We use a model-based approach. Given a formula φ and model M
of system, determine if M satisfies φ (denoted as M |= φ)
-Specifications written in Temporal Logic

-formula isn’t statically true/false in model
-dynamic notion of truth
-classified according to view of time:

-linear-time vs. branching time
-discrete vs. continuous time

-We will study CTL (computation tree logic) – branching-time +
discrete

2

3

-CTL formulas are defined inductively in Backus-Naur form (BNF)
-Set of atomic propositions AP, where p∈AP
-CTL formula φ := ⊥ | T | p | (¬ φ) | (φ∧ φ) | (φ ∨ φ) | (φ →φ) |
AX φ | EX φ | A[φU φ] | E[φU φ] | AG φ | EG φ | AF φ | EF φ
-Thus, we have new logical connectives
-AX,EX,AG,EG,AU,EU,AF,EF are temporal connectives

-come in pairs: path quantifier + temporal operator
-path quantifiers: A = “along all paths”, E = “along some
path”
-Temporal operators: X = next state, F = some future
state, G = all future states (globally), U = until.
-Ex: EU is actually E[φ1U φ2]. EU and AU are binary
operators.

-Notions of well-formed CTL formulas and not well-formed
formulas.

-Well-formed include: EGr, AG(q→EGr)…
-Not well-formed include: FGr, EF(rUq), A ¬G ¬p,…

4

-Can write out parse trees for well-formed CTL formulas
-Definition: a subformula of a CTL formula φ is any formula ψ
whose parse tree is a subtree of φ’s parse tree.
-Semantics of CTL:

-Given a model M of our system, we denote M,s |= φ to mean
that in state s of M, φ holds. Let S denote states of M.
-|= is called satisfaction relation. Defined using structural
induction on all CTL formulas:

-1) M,s |= T and M,s |= ⊥ for all s ∈S.
-2) M,s |= p iff p ∈L(s)
-3) M,s |= ¬ φ iff M,s !|= φ
-4) M,s |= φ1∧φ2 iff M,s |= φ1 and M,s |= φ2
-5) M,s |= φ1 ∨φ2 iff M,s |= φ1 or M,s |= φ2
-6) M,s |= φ1 →φ2 iff M,s !|= φ1 or M,s |= φ2
-7) M,s |= AX φ iff for all s1 s.t. s s1 is a transition, we have
M,s1 |= φ.

3

5

-8) M,s |= EX φ iff for some s1 s.t. s s1 is a transition, we
have M,s1 |= φ
-9) M,s |= AG φ iff for all paths s1 s2 … where s1 = s, and
all for all si along the path we have M,si |= φ
-10) M,s |= EG φ iff there exists some path s1 s2 … where
s1 = s, and for all si along the path we have M,si |= φ
-11) M,s |= AF φ iff for all paths s1 s2 … where s1 = s,
there is some si on the path s.t. M,si |= φ
-12) M,s |= EF φ iff there exists a path s1 s2 … where s1 =
s, there is some si on the path s.t. M,si |= φ
-13) M,s |= A[φ1U φ2] iff for all paths s1 s2 … where s1 =
s, the path satisfies φ1U φ2, ie, there is some si on the path s.t.
M,si |= φ2 holds and for each j < i, we have M,sj |= φ1
-14) M,s |= E[φ1U φ2] iff there is some path s1 s2 …
where s1 = s, the path satisfies φ1U φ2, ie, there is some si on
the path s.t. M,si |= φ2 holds and for each j < i, we have M,sj
|= φ1

6

-What kind of relevant properties can we check with CTL formulas?
-We’ll see some examples in class

-Classical hierarchical classification of verification goals
-Reachability property – some situation can be reached

-Ex: “we can enter a critical section”
-Specified in CTL using the EF operator (EFcrit_sec)

-Safety property – under certain conditions, something never
occurs

-Ex: “both processes will never be in their critical sections
simultaneously”
-Specified in CTL using the AG, U, or W (weak until)
operators

-Liveness property – under certain conditions, something will
ultimately occur

-Ex: “any request will ultimately be satisfied”, “the light will
turn green”
-Tricky to specify, 2 broad families: progress and fairness

4

7

-Is liveness even useful? – no bound on notion of when!
-Fairness property – under certain conditions, something will (or
will not) occur infinitely often

-Ex: “if access to a critical section is infinitely often
requested, then access will be granted infinitely often” –
notion of no starvation
-Lots of work in the 1980’s. We will discuss it later because
it is non-trivial.

-Important equivalences between CTL formulas
-Definition: 2 CTL formulas φ and ψ are semantically equivalent
if any state in any model which satisfies one of them also satisfies
the other. Denoted as φ ≡ ψ.
-We will see some useful ones in lecture
-Equivalences also lead to functionally complete sets for CTL
(called adequate sets). One useful set for CTL is
{AU,EU,EX,¬,∧,⊥}

8

-Now, we develop of model checking algorithm to automatically
determine whether M,s |= φ

-Algorithm returns all states s of M which satisfy φ
-Routine TRANSLATE(φ): pre-processes φ to rewrite φ in terms
of adequate set given above
-Label states of M with subformulas of φ satisfied at that state
starting with smallest subformulas and working outwards to φ
-Suppose ψ is a subformula of φ and sates satisfying all
immediate subformulas of ψ have been labeled
-Use case analysis to label states with ψ:

-If ψ is:
-⊥: no states are labeled with ⊥
-p: label s with p if p∈L(s)
-ψ1∧ ψ2: label s with ψ1∧ ψ2 if s is already labeled with
both ψ1 and ψ2
-¬ ψ1: label s with ψ1 if s is not already labeled with ψ1

5

9

-AF ψ1:
-If any state s is labeled with ψ1, label it with AF ψ1
-Repeat: until no change, label any state with AF ψ1 if
all successor states are labeled with AF ψ1

-E[ψ1U ψ2]:
-If any state is labeled with ψ2, label it with E[ψ1U
ψ2]
-Repeat: until no change, label any state with E[ψ1U
ψ2] if it is labeled with ψ1 and at least 1 successor is
labeled with E[ψ1U ψ2]

-EX ψ1: label any state with EX ψ1 if one of its successors
is labeled with ψ1

-Finally, just output all states labeled with φ and we are done!
-Complexity? = O(f*V*(V+E)) where f = # of connectives in φ,
V = # of states in M, E = # of transitions in M

-=> linear in formula size, quadratic in model size

10

-Is there a faster way? Yes!
-Handle EG and AG directly:
-EG ψ1:

-Label all states with EGψ1
-If any sate is not labelled with ψ1, delete label EGψ1
-Repeat: until no change, delete label EGψ1 from any state if
none of its successors are labeled with EGψ1

-Turns out, there is even a more cleverer way of handling EG (in
book). Using adequate set of {EX,EU,EG,¬,∧,⊥} one can
achieve a complexity of O(f*(V+E)) => linear in both the size of
the formula and the model!

-NEXT LECTURE: briefly touch on other temporal logics (LTL,
CTL*), symbolic model checking, fairness, and our first real system:
SMV

