- We will first finish up Timed Automata from the last lecture…
- The fixed point characterization of CTL
 - We discuss this issue to motivate a proof of correctness of our model checking algorithm for CTL
 - This also provides necessary background for discussing the relational mu-calculus and its applications to model checking
- Recall: given a Model \(M = (S, \rightarrow, L) \), our algorithm computes all \(s \in S \) s.t. \(M,s \models \phi \) for a CTL formula \(\phi \)
 - We denote this set as \(\{ \phi \} \)
 - Our algorithm is recursive on the structure of \(\phi \)
 - For boolean operators it is easy to find \(\{ \phi \} \) via combinations of subsets using Union, Intersection, etc
 - An interesting case though is a formula involving a temporal operator (such as \(\text{EX} \ \phi \))
 - We compute the set \(\{ \phi \} \), then compute the set of all states with transitions to a state in \(\{ \phi \} \)
- How do we reason about \(\text{EU}, \text{AF}, \text{and EG}? \) – we are iterating a labelling policy until stabilised!
-But how do we know that such iterations will terminate and even return the correct sets?? How can we argue this?

-Defn: let S be a set of states and $F: P(S) \rightarrow P(S)$ be a function on the power set of S (where $P(S)$ denotes power set of S). Then,

1) F is monotone if $x \subseteq Y$ implies that $F(X) \subseteq F(Y)$ for all subsets X and Y of S

2) A subset X of S is called a fixed point of F if $F(X) = X$

-We’ll see an example in class of fixed points and monotone functions. Indeed, a greatest fixed point is a subset X that is a fixed point and has the largest size. A least fixed point can be defined similarly

-Why are we exploring monotone functions?

-They always have a least and greatest fixed point

-The meanings of EG, AF, EU can be expressed via greatest and least fixed points of monotone function on $P(S)$ ($S = \text{set of states}$)

-Fixed points are easily computed
-Notation: $F^i(X) = F(F(\ldots F(X)\ldots))$ => a function F applied i times
-Theorem: Let S be a set $\{s_0, s_1, \ldots, s_n\}$ with n+1 elements. If $F: P(S) \rightarrow P(S)$ is a monotone function, then $F^{n+1}(\emptyset)$ is the least fixed point of F, and $F^{n+1}(S)$ is the greatest fixed point of F.
 -Proof: in book on page 207
 -This theorem provides a recipe for computing fixed points!
 Indeed, the method is bounded at n+1 iterations.
-Now, we can prove the correctness of our model checking algorithm
 -Proof that EG algorithm is correct:
 -We could say that $EG \phi = \phi \land EXEG \phi$ (call this (1))
 -Also, $\{EG \phi\} = \{s|\exists s' s.t. s \rightarrow s' \text{ and } s' \in \{\phi\}\}$
 -Thus, we can rewrite (1) as
 -$\{EG \phi\} = \{\phi\} \cap \{s|\exists s' s.t. s \rightarrow s' \text{ and } s' \in \{EG \phi\}\}$
 -Thus, we calculate $\{EG \phi\}$ from $\{EG \phi\}$ – this sounds like a fixed point operation!
 -Indeed, $\{EG \phi\}$ is a fixed point of the function
 -$F(X) = \{\phi\} \cap \{s|\exists s' s.t. s \rightarrow s' \text{ and } s' \in X\}$
- F is monotone, and \(\{\text{EG } \phi\} \) is its greatest fixed point
 -(Formal proof is in book on pg. 209)
- \(\{\text{EG } \phi\} \) can be computed using our theorem for fixed
 points, applied iteratively
 - ie, \(\{\text{EG } \phi\} = F^{n+1}(S) \) where \(n+1=|S| \)
- Thus, correctness of EG procedure is proved and it is
guaranteed to terminate in at most \(|S|\) iterations
- The book gives similar fixed point analysis for the EU operator,
 showing that its algorithm is also correct
- This, when combined with the correctness of EX and the boolean
 operators, completes proof of correctness of our CTL model
 checking algorithm
- Now, let’s discuss the relational mu-calculus and how model
 checking can be performed in it
 - We introduce a syntax for referring to fixed points in the context
 of boolean formulas
Formulas of the relational mu-calculus grammar:

\[-t = x \mid Z\]
\[-f = 0 \mid 1 \mid t \mid !f \mid f_1 + f_2 \mid f_1 * f_2 \mid \exists x.f \mid \forall x.f \mid uZ.f \mid vZ.f \mid f[X=X']\]

Where \(x\) is a boolean variable, \(Z\) is a relational variable, and \(X\) is a tuple of variables.

A relational variable can be assigned a subset of \(S\) (set of states).

In formulas \(uZ.f\) and \(vZ.f\) any occurrence of \(Z\) in \(f\) is required to fall within an even \# of complementation symbols.

Such an \(f\) is called formally monotone in \(Z\).

Symbols \(u\) and \(v\) stand for least and greatest fixed point operators.

Thus, \(uZ.f\) means “least fixed point of function \(f\)” (where the iteration is “occurring” on relational variable \(Z\). The “returned” \(Z\) is the least fixed point of \(f\)
- The formula $f[X=X']$ expresses the explicit substitution forcing f to be evaluated using the values of x_i' rather than x_i (allows for notions of “next time” evaluations, like successors).

- A valuation p for f is an assignment of values 0 or 1 to all variables.

- Define: satisfaction relation $p \models f$ inductively over the structure of such formulas f, given a valuation p.

- We define \models for formulas without fixed point operators:

 - $p \not\models 0$, $p \models 1$, $p \models v$ iff $p(v)=1$, $p \models !f$ iff $p \not\models f$, $p \models f+g$ iff $p \models f$ or $p \models g$, $p \models f \cdot g$ iff $p \models f$ and $p \models g$, $p \models \exists x.f$ iff $p[x=0] \models f$ or $p[x=1] \models f$, $p \models \forall x.f$ iff $p[x=0] \models f$ and $p[x=1] \models f$, $p \models f[X=X']$ iff $p[X=X'] \models f$.

- Where $p[X=X']$ is the valuation assigning the same values as p but for each x_i in X, it assigns $p(x_i')$.

- We’ll see a few examples in class that make all this jumbled notation clearer.

- Now, we extend the \models definition to fixed point operators u and v.
\(p \models u Z. f \iff p \models u_m Z. f \) for some \(m \geq 0 \)

Where \(u_Z.f \) is recursively defined as

\(u_0Z.f = 0 \)
\(u_mZ.f = f[u_{m-1}Z.f/Z] \) (that is, replace all occurrences of \(Z \) in \(f \) with \(u_{m-1}Z.f \))

\(p \models v Z. f \iff p \models v_m Z. f \) for all \(m \geq 0 \)

Where \(v_Z.f \) is recursively defined as

\(v_0Z.f = 1 \)
\(v_mZ.f = f[v_{m-1}Z.f/Z] \)

We’ll see some examples in class that will makes this intuitive. Essentially, these are just recursive definitions, they iterate to fixed points

So now we can code CTL models and specifications

Given a model \(M = (S, \rightarrow, L) \), the \(u \) and \(v \) operators permit us to translate any CTL formula \(\phi \) into a formula \(f_\phi \) of the relational mu-calculus s.t. \(f_\phi \) represents the set of states \(s \) where \(s \models \phi \)

Then, given a valuation \(p \) (ie, a state), we can check if \(p \models f_\phi \), meaning that the state satisfies \(\phi \)
-Indeed, we can do this purely symbolically
 -Recall that the transition relation \rightarrow can be represented as a boolean formula f^{\rightarrow} (from our symbolic model checking lecture 4). Also, sets of states can be encoded as boolean formulas.
-Therefore, the coding of a CTL formula ϕ as a function f^ϕ in relational mu-calculus is given inductively:
 -$f^x = x$ for vars x
 -$f^\bot = 0$
 -$f^\neg \phi = !f^\phi$
 -$f^{\phi \lor \psi} = f^\phi \cdot f^\psi$
 -$f^{\text{EX}\phi} = \exists X' ((f^{\rightarrow} \cdot f^\phi[X=X']))
-What the heck does that mean? “There exists a next state s.t. the transition relation holds from the current state AND f^ϕ holds in this next state”
-We can also encode the formula for $\text{EF}\phi$
-Note that $\text{EF}\phi = \phi \lor \text{EXEF}\phi$
-Thus, $f^{\text{EF}\phi}$ is equivalent to $f^{\phi} + f^{\text{EXEF}\phi}$, which is equivalent to $f^{\phi} + \exists X'.(f^{\rightarrow \star f^{\text{EF}\phi}[X=X']})$
-Since EF involves computing the least fixed point, we obtain
 -$f^{\text{EF}\phi} = uZ.(f^{\phi} + \exists X'.(f^{\rightarrow \star Z}[X=X']))$, where Z is a relational variable.
-Thus, we are getting the least fixed point of the formula that precisely encodes $\text{EF}\phi = \phi \lor \text{EXEF}\phi$
-The book provides similar coding for AF and EG on page 368
-The important point is to see how we used the fixed point characterization of CTL to code CTL formulas in relational mu-calculus (which has a fixed point syntax!)
-Thus, we can model check in terms of these relational mu-calculus formulas and symbolic representations of states and the transition relation
-Our last topic today, time-permitting, is to discuss a few abstraction techniques in model checking

-Abstraction methods are a family of techniques used to simplify automata.

-It is probably “the most important technique for reducing the state explosion problem.” –EM Clarke

-Aim: given model as an automata A, we reduce a complex problem of $A \models \phi$ into a much simpler problem $A' \models \phi$

-Thus, this is another layer of abstraction on top of the abstraction of specifying a model to represent the system in question

-We’ll look more at examples to illustrate abstraction as opposed to developing a formal theory (for those interested, see me after class or email)

-Why/when abstraction? Automata (model) is too big to check, of model checker doesn’t handle certain details of the model
- We’ll look at 2 techniques
 - Abstraction by state merging
 - Cone of influence reduction
- Abstraction by state merging
 - View some states as identical (ie, notions of folding states)
 - Merged states are put together into a super-state
 - Merging can be used for verifying safety properties, mainly because
 - 1) the merged automata A' has more behaviors than A
 - 2) the more behaviors an automata has, the fewer safety properties it fulfills
 - 3) thus, if A' satisfies a safety property p, then so too does A satisfy p
 - 4) if A' doesn’t satisfy p, no conclusion can be drawn about A
- Why is this verification only one-way?
- There is a difficulty here though:
-How are atomic propositions labeling states gathered together into the super-state??
- In principle: never merge states that are labeled with different sets of atomic props
- But this is way too restrictive
- How weaken?
 - Turns out that if merging is used to check property \(p \), then only the propositions occurring in \(p \) are relevant
 - Thus, if a proposition \(X \) only appears in positive form in \(p \) (each occurrence of \(X \) is within an even # of negation symbols), then we can merge states w/o the need for these to agree on the presence of \(X \)
 - The super-state then carries the label of \(X \) iff all merged states carry the label \(X \)
 - This rationale isn’t obvious though…

- Abstraction via cone of influence reduction
 - Suppose we are given a subset of the variables \(V' \subseteq V \) that are of interest with respect to a required spec
- Recall: system can be specified as a Kripke Structure using equations for transition relations, and an equation for the initial set of states of the system.
- We want to simplify the system description by referring to only those variables V'.
- But, values of V' variables may depend on the values of variables not in V'.
 - For example, we’ll consider the modulo 8 counter that we examined in lecture 2.
- We define the cone of influence C for V' and use C for our reduction of the system.
- Defn: the cone of influence C of V' is the minimal set of vars s.t.
 - 1) V' is a subset of C.
 - 2) if for some $v_1 \in C$ its formula f_1 depends on v_j, then v_j is also in C.
- Therefore, the reduced system is constructed by removing all transition equations whose left hand side variables do not appear in C.
-We’ll see the full example of this technique in class using the Kripke Structure model for the modulo 8 counter
-We won’t, however, go over the proof arguing that removal of such equations doesn’t affect the equivalency of the model