CSEP590 – Model Checking and Automated Verification

Lecture outline for July 23, 2003
-Today, we will talk about a few “loose ends” from previous lectures, as well as model checking for timed, reactive systems.
-First, we deal with Fairness in model checking
 - $M, s_0 \models \phi$ may fail due to unrealistic behavior
 - Example: 2 processes with critical sections. Process1 may stay indefinitely in critical section, preventing Process2 from entering its critical section.
- Fairness constraints: state that a given formula is true infinitely often on every computation path
 - Such paths are fair computation paths
- How accomplish? When evaluating truth of CTL formula, A and E connectives only range over fair paths
- Defn: Let $C = \{f_1, f_2, \ldots, f_n\}$ be a set of n fairness constraints. A computation path $s_0 \rightarrow s_1 \rightarrow$ is fair with respect to C if for each i there are infinitely many j s.t. $s_j \models f_i$, that is, each f_i is true infinitely often along the path
- We’ll let A_C and E_C denote the operations A and E restricted to fair paths
- Recall: EU, EG, and EX form an adequate set for CTL
 - Therefore, E_CU, E_CG, and E_CX form an adequate set for fair CTL
- Indeed, E_CU and E_CX can be represented in terms of E_CG, thus we only need an algorithm for checking $E_CG\phi$:
 - Restrict graph to states satisfying ϕ
 - In this graph, want to know from which states there is a fair computation path
 - Find the maximal SCCs (Strongly Connected Components) of restricted graph
 - Remove a SCC is for some f_i, it doesn’t contain a state satisfying f_i. Result SCCs are “fair SCCs”
 - Any state of restricted graph that can reach a fair SCC has a fair path from it
- Use search to find such states
- The complexity of this algorithm is $O(n^*f^*(V+E)) \Rightarrow$ still linear!

- Extensions and Alternatives to CTL
 - Linear Time Logic (LTL)
 - Close to CTL, but formulas have meanings on individual computation paths \Rightarrow no quantifiers A and E
 - Is LTL less expressive than CTL? More expressive?

- LTL syntax for a formula ϕ
 - $\phi := p \mid (! \phi) \mid (\phi \text{ and } \phi) \mid (\phi U \phi) \mid (G \phi) \mid (F \phi) \mid (X \phi)$

- Formula is evaluated on a path or a set of paths
 - Set of paths satisfy formula if every path in the set does
 - Consider path $\pi = s_1 \rightarrow s_2 \rightarrow \ldots$ where π^i represents the suffix starting at s_i

- Defn: give a model M for CTL, define when a path π satisfies an LTL formula via $|=\text{ relation}$:
-1) \(\pi \models T \)
-2) \(\pi \models p \) iff \(p \) is in \(L(s_1) \)
-3) \(\pi \models !\phi \) iff \(\pi \not\models \phi \)
-4) \(\pi \models \phi_1 \) and \(\phi_2 \) iff \(\pi \models \phi_1 \) and \(\pi \models \phi_2 \)
-5) \(\pi \models X\phi \) iff \(\pi^2 \models \phi \)
-6) \(\pi \models G\phi \) iff for all \(i \) at least 1, \(\pi^i \models \phi \)
-7) \(\pi \models F\phi \) iff for some \(i \) at least 1, \(\pi^i \models \phi \)
-8) \(\pi \models \phi_1 U\phi_2 \) iff for some \(i \) at least 1 s.t. \(\pi^i \models \phi_2 \) and for all \(j = 1 \ldots i-1 \) we have \(\pi^j \models \phi_1 \)

-LTL formula is satisfied in a state \(s \) of the model if the formula is satisfied on every path starting at \(s \)

-LTL has the usual G and F equivalences, as well as distribution over AND and OR

-There is also 1 very important equivalence we will see, which is relied upon to show that EG, EU, EX form an adequate set
-CTL* - allows nested modalities and boolean connectives before applying path quantifiers E and A.

-We’ll see some examples of this in class

-Syntax of CTL*

-Divides formulas into 2 classes

-State formulas: evaluated in states:

-$$\phi := p \mid T \mid ! \phi \mid (\phi \text{ and } \phi) \mid A[\alpha] \mid E[\alpha]$$

-Path formulas: evaluated along paths:

-$$\alpha := \phi \mid ! \alpha \mid (\alpha \text{ and } \alpha) \mid (\alpha U \alpha) \mid G \alpha \mid F \alpha \mid X \alpha$$

-This is a mutually recursive definition

-LTL us a subset of CTL*. Why?

-CTL is subset of CTL*. Why?

-We’ll see in class examples of formulas that define the differences between these 3 logics
Timed Automata
- Model reactive systems where there are notions of “real-time”
 - Ex: “trigger the alarm upon detection of a problem” vs.
 “trigger the alarm in less than 5 seconds after detecting the
 problem”
- How do we model such systems? How do we verify them?
 - We’ve seen one way: basic synchronization based on a
 global clock
 - Very inadequate though
- Timed Automata – model quantitative info on passage of time
- 2 elements:
 - Finite automata
 - Clocks (associated with transitions)
 - Take on non-negative real values
 - All clocks start out null in the initial state
A configuration of the system is \((q,v)\) where \(q\) is the current control state and \(v\) is a valuation of the automaton’s clocks. Configurations change in 1 of 2 ways:

- A delay \(d\) in time elapses, in which case all clocks are updated by \(d\) (\((q,v) \rightarrow (q, v+d)\))
- Discrete transition – an action transition (as with normal automata, a control state change). Some clocks may be reset to 0 on such transitions

We’ll see an example in class.

Networks of Timed Automata

- Composite model composed of many timed automata synchronized.
- All clocks across all components are updated on delays
- Similar to what we saw with modeling systems via automata

Example in class: the classical railway example

There are 3 common extensions to this model of timed automata.
- Invariants: guarantee that a certain transition eventually occurs by placing invariants on clocks in a state
 - If no transition is taken, invariants expire and system reaches deadlock
- Urgency: transition that can’t tolerate time delay
- Hybrid Linear Systems – provide access to dynamic variables
 - Variables that evolve continuously (such as via a differential equation).
 - Altitude, time, speed, temperature….
 - Very tricky to model and model check (HyTECH system can do it on occasion)
- Timed Temporal Logic (TCTL)
 - Used to state properties about timed automata
 - Extension of CTL
 - Extends U,F,… operators with info on the flow time
-Ex: \(pU_{<2}q \) means that \(p \) is true until \(q \), where \(q \) is true in less than 2 time units from the current time

-TCTL syntax:

\[
\phi_1, \phi_2 := p \mid ! \phi_1 \mid (\phi_1 \text{ and } \phi_2) \mid (\phi_1 \rightarrow \phi_2) \mid (\phi_1 \text{ or } \phi_2) \mid EF(\sim k) \phi_1 \mid EG(\sim k) \phi \mid E[\phi_1 U(\sim k) \phi_2] \mid AF(\sim k) \phi_1 \mid AG(\sim k) \phi_1 \mid A[\phi_1 U(\sim k) \phi_2] \\
\]

-Where \(\sim \) is any comparison \((<, >, =, \ldots)\)

-We’ll see some examples of formulas in class

-Note: X operator doesn’t exist because clocks have real values, so there is no notion of “next configuration”

-So how do we performed Timed Model Checking?

-Problem: infinite number of configurations because clocks take on real values \(\Rightarrow \) infinitely many valuations

-How fix?

-Define a notion of “closeness” between configurations
-Given clock constraints appearing in transitions and largest constraint used in these constraints, equivalence (\sim) on clock valuations is defined with the following property: for any timed automaton using these constraints, 2 configurations \((q,v)\) and \((q,v')\) with \(v \sim v'\) satisfy the same TCTL formulas.
-This defines a set of equivalence classes (or regions). There is a finite number of regions!
-Given a configuration \((q,v)\), we consider instead the region \([v]\) for \(v\).
-This defines a global automaton, or a region graph that represents abstractly the system. We model check on that instead.
-Configurations are grouped into a region depending on their clock valuations.
-One problem: exponential in number of clocks.
-Timed Automata are relatively new, but some progress is still being made
-We’ll see a full example of a region graph in class
-Time permitting, we will discuss some more about SMV (via a full example) to prepare you for PS4