
CSEP590 – Model Checking and Software Verification
Summer 2003
Solution Set 3

1. CTL equivalence/non-equivalence
Solutions:
a) EFp ∧ EGq, EF(p ∧ EGq)
Not equivalent

Counter-example: EFp ∧ Egq satisfied, but not EF(p ∧ EGq)

b) AFp ∧ AGq, AF(p ∧ AGq)
Not equivalent

Counter-example: AF(p ∧ AGq) satisfied, but not AFp ∧ AGq

c) AFp ∧ AGq, AG(AFp ∧ q)
Not equivalent

Counter-example: AFp ∧ Agq is satisfied, but not AG(AFp ∧ q)

d) AFAGp ∧ AFAGq, AF(AGp ∧ AGq)
Equivalent

Justification:
i) AFAGp ∧ AFAGq ⇒ AF(AGp ∧ AGq)
Suppose AFAGp ∧ AFAGq holds, then there is a state somewhere in all future
paths at which p is true, and all states on all paths from that state have p true as
well. Furthermore, we know that there is a state somewhere in all future paths
with q true, and that all states on all paths from that state have q true as well.
Then we see that it must be true that somewhere on all future paths there must be
“an intersection”, that is, there mus t be a state where both p and q are true, and all
paths from that state have both p and q true as well. Thus AF(AGp ∧ AGq) must
also hold.

ii) AF(AGp ∧ AGq) ⇒ AFAGp ∧ AFAGq
Suppose that AF(AGp ∧ AGq) holds, then it must be true that there is a state
somewhere in all future paths at which p and q hold, and all states on all paths
from that state have both p and q true as well. Thus, for each future path, we can
choose the latter described state, and then it is true that p holds globally at that
state, it is also true that q holds globally at that state. Therefore, AFAGp ∧
AFAGq must also hold.
Therefore, AFAGp ∧ AFAGq and AF(AGp ∧ AGq) are equivalent.

e) E[pUq] ∧ E[qUr], E[pUr]
Not equivalent

Counter-example: E[pUq] ∧ E[qUr] is satisfied, but not E[pUr]

f) A[pUq] ∧ A[qUr], A[pUr]
Not equivalent

Counter-example: A[pUq] ∧ A[qUr] is satisfied, but not A[pUr]

2. CTL formulas and M

s0 s3

s1 s2

Solutions:
a) AFq
Holds.
q is true at s0, and the future includes the present, thus all future paths contain q.

b) AG(EF(p ∨ q))
Holds.
This can be seen by noting that states s0, s1, s2, and s3 all satisfy EF(p ∨ q) – there is some
state reachable from those states where either p or q is satisfied.

c) EX(EXr))
Holds.
Look at path s0, s1, s1 - this path shows the existence of a state following s0, immediately
after which there is a state with r true.

d) AG(AFq))
Does not hold.
To see this consider the path s0, s1, s1, s1, s1, s1, (s1 repeating)…

e) AGEXE[(p ∨ r)Uq]
Holds.
To see this, notice that EXE[(p ∨ r)Uq] holds for all states:
s0 – next state is s1, then E[(p ∨ r)Uq] holds as s1, s2, s0
s1 – next state is s1, then E[(p ∨ r)Uq] holds as s1, s2, s0
s2 – next state is s3, then E[(p ∨ r)Uq] holds as s3, s0
s3 – next state is s0, then E[(p ∨ r)Uq] holds as s0, s3

Corrected Solution:
f) AF(A[(p → r)Uq]
Holds.
A[(p → r)Uq] is equivalent to A[(¬p ∨ r)Uq]

p,q

p,t r

q,r

To see this, we show that A[(¬p ∨ r)Uq] all paths from s0 satisfy this formula. The trick
is that formally “A[p U q]” means that on all paths, p occurs 0 or more times until q.
Then we just note that q is asserted in state s0, and so A[(¬p ∨ r)Uq] holds on every path.

3. CTL formulas for English properties
Solution:

a) “The event p always precedes the event q.”
¬E[¬p U (q ∧ ¬p)]

b) “After p, q is never true.”
AG(p → AXAG¬q)

c) “Between the events q and r, p is never true.”
[AG(q → ¬EF(p ∧ EFr))] ∧ [AG(r → ¬EF(p ∧ E))]

4. Pseudo-code for TRANSLATE
Solution:

function translate(formula F) {
 case (F) {
 F is T : return T;
 F is (bottom) : return ¬T;
 F is an atomic proposition : return F;
 F is ¬ F1 : return (¬TRANSLATE(F));
 F is F1 ´ F2 : return (TRANSLATE(F1) ´ TRANSLATE(F2));
 F is F1 ` F2 : return (¬(TRANSLATE(¬F1) ´ TRANSLATE(¬F2)));
 F is F1 à F2 : return (TRANSLATE(¬F1 ` F2));
 F is AX F1 : return (TRANSLATE(¬EX¬F1));
 F is EX F1 : return (EX (TRANSLATE(F1)));
 F is A[F1 U F2]: return (A[TRANSLATE(F1) U TRANSLATE(F2)]);
 F is E[F1 U F2]: return (E[TRANSLATE(F1) U TRANSLATE(F2)]);
 F is EF F1 : return (E [T U TRANSLATE(F1)]);
 F is EG F1 : return (TRANSLATE(¬AF¬ F1));
 F is AF F1 : return (A [T U TRANSLATE(F1)]);
 F is AG F1 : return (TRANSLATE(¬EF¬ F1));
 }
}

5. Microwave modeling
AG(Start → AF Heat)
Solutions:
a) Formula meaning

- “In all states, it is true that if start holds in a state, the in some state on all future
 paths from that state, heat will eventually hold also”
- We’re checking that if start is pressed, then the heat will eventually turn on.

b) Equivalent to ¬EF(Start ∧ EG¬Heat)

AG(Start → AF Heat) = ¬EF (¬(Start → AF Heat)) ~ Translate AG to EF
 = ¬ EF (¬(¬Start ∨ AF Heat)) ~ Substitute →
 = ¬ EF (Start ∧ (¬AF Heat)) ~ DeMorgan’s law
 = ¬ EF (Start ∧ EG¬Heat) ~ Translate AF to EG

c) Does M,1 |= φ hold?

Subformula Satisfied States
Heat 4, 7

¬ Heat 1, 2, 3, 5, 6
EG ¬ Heat 1, 2, 3, 5

Start 2, 5, 6, 7
Start ∧ EG¬Heat 2, 5

EF (Start ∧ EG¬Heat) 1, 2, 3, 4, 5, 6, 7
¬ EF (Start ∧ EG¬Heat) none

So, the formula does not hold for state 1.

