CSEP590 – Model Checking and Software Verification Summer 2003 Solution Set 3

1. CTL equivalence/non-equivalence Solutions: a) $EFp \land EGq$, $EF(p \land EGq)$ Not equivalent

Counter-example: $EFp \land Egq$ satisfied, but not $EF(p \land EGq)$

b) $AFp \land AGq, AF(p \land AGq)$ Not equivalent

Counter-example: $AF(p \land AGq)$ satisfied, but not $AFp \land AGq$

c) $AFp \land AGq, AG(AFp \land q)$ Not equivalent

Counter-example: $AFp \land Agq$ is satisfied, but not $AG(AFp \land q)$

d) $AFAGp \land AFAGq$, $AF(AGp \land AGq)$ Equivalent

Justification:

i) $AFAGp \land AFAGq \Rightarrow AF(AGp \land AGq)$

Suppose AFAGp \land AFAGq holds, then there is a state somewhere in all future paths at which p is true, and all states on all paths from that state have p true as well. Furthermore, we know that there is a state somewhere in all future paths with q true, and that all states on all paths from that state have q true as well. Then we see that it must be true that somewhere on all future paths there must be "an intersection", that is, there must be a state where both p and q are true, and all paths from that state have both p and q true as well. Thus AF(AGp \land AGq) must also hold.

ii) $AF(AGp \land AGq) \Rightarrow AFAGp \land AFAGq$

Suppose that AF(AGp \land AGq) holds, then it must be true that there is a state somewhere in all future paths at which p and q hold, and all states on all paths from that state have both p and q true as well. Thus, for each future path, we can choose the latter described state, and then it is true that p holds globally at that state, it is also true that q holds globally at that state. Therefore, AFAGp \land AFAGq must also hold.

Therefore, AFAGp \land AFAGq and AF(AGp \land AGq) are equivalent.

e) $E[pUq] \wedge E[qUr], E[pUr]$

Not equivalent

Counter-example: $E[pUq] \wedge E[qUr]$ is satisfied, but not E[pUr]

f) $A[pUq] \land A[qUr], A[pUr]$ Not equivalent

Counter-example: $A[pUq] \land A[qUr]$ is satisfied, but not A[pUr]

2. CTL formulas and M

Solutions:

a) AFq Holds.

q is true at s₀, and the future includes the present, thus all future paths contain q.

b) $AG(EF(p \lor q))$ Holds.

This can be seen by noting that states s_0 , s_1 , s_2 , and s_3 all satisfy $EF(p \lor q)$ – there is some state reachable from those states where either p or q is satisfied.

c) EX(EXr))

Holds.

Look at path s_0 , s_1 , s_1 - this path shows the existence of a state following s_0 , immediately after which there is a state with r true.

d) AG(AFq))
Does not hold.
To see this consider the path s₀, s₁, s₁, s₁, s₁, s₁, s₁, (s₁ repeating)...

e) AGEXE[$(p \lor r)$ Uq] Holds.

To see this, notice that $EXE[(p \lor r)Uq]$ holds for all states:

 s_0 – next state is s_1 , then E[($p \lor r$)Uq] holds as s_1 , s_2 , s_0

 s_1 – next state is s_1 , then E[($p \lor r$)Uq] holds as s_1 , s_2 , s_0

 s_2 – next state is s_3 , then E[($p \lor r$)Uq] holds as s_3 , s_0

 s_3 – next state is s_0 , then E[($p \lor r$)Uq] holds as s_0 , s_3

Corrected Solution:

f) $AF(A[(p \rightarrow r)Uq]$ Holds. $A[(p \rightarrow r)Uq]$ is equivalent to $A[(\neg p \lor r)Uq]$ To see this, we show that $A[(\neg p \lor r)Uq]$ all paths from s_0 satisfy this formula. The trick is that formally "A[p U q]" means that on all paths, p occurs *0 or more* times until q. Then we just note that q is asserted in state s_0 , and so $A[(\neg p \lor r)Uq]$ holds on every path.

3. CTL formulas for English properties **Solution:**

```
a) "The event p always precedes the event q."
\neg E[\neg p U (q \land \neg p)]
```

```
b) "After p, q is never true."
AG(p \rightarrow AXAG \neg q)
```

c) "Between the events q and r, p is never true." [AG(q $\rightarrow \neg$ EF(p \land EFr))] \land [AG(r $\rightarrow \neg$ EF(p \land E))]

4. Pseudo-code for TRANSLATE **Solution:**

```
function translate(formula F) {
         case (F) {
            F is T : return T;
            F is (bottom) : return \neg T;
            F is an atomic proposition : return F;
            F is ¬ F1 : return ( ¬TRANSLATE(F) );
            F is F1 ´ F2 : return (TRANSLATE(F1) ´ TRANSLATE(F2) );
            F is F1 ` F2 : return (¬(TRANSLATE(¬F1) ´ TRANSLATE(¬F2)));
            F is F1 \rightarrow F2 : return (TRANSLATE(\negF1 \hat{} F2) );
            F is AX F1 : return (TRANSLATE(¬EX¬F1) );
            F is EX F1 : return (EX (TRANSLATE(F1)));
            F is A[F1 U F2]: return (A[TRANSLATE(F1) U TRANSLATE(F2)]);
            F is E[F1 U F2]: return (E[TRANSLATE(F1) U TRANSLATE(F2)]);
            F is EF F1 : return ( E [T U TRANSLATE(F1)] );
            F is EG F1 : return (TRANSLATE(¬AF¬ F1) );
            F is AF F1 : return ( A [T U TRANSLATE(F1)] );
            F is AG F1 : return (TRANSLATE(¬EF¬ F1) );
         }
}
```

5. Microwave modeling AG(Start → AF Heat)
Solutions:
a) Formula meaning

- "In all states, it is true that if start holds in a state, the in some state on all future paths from that state, heat will eventually hold also"
- We're checking that if start is pressed, then the heat will eventually turn on.

b) Equivalent to $\neg EF(Start \land EG \neg Heat)$

$$AG(Start \rightarrow AF Heat) = \neg EF (\neg(Start \rightarrow AF Heat))$$
~ Translate AG to EF $= \neg EF (\neg(\neg Start \lor AF Heat))$ ~ Substitute \rightarrow $= \neg EF (Start \land (\neg AF Heat))$ ~ DeMorgan's law $= \neg EF (Start \land EG\neg Heat)$ ~ Translate AF to EG

c) Does M,1 $\models \phi$ hold?

Subformula	Satisfied States
Heat	4, 7
¬ Heat	1, 2, 3, 5, 6
EG – Heat	1, 2, 3, 5
Start	2, 5, 6, 7
Start \land EG \neg Heat	2, 5
EF (Start $\land EG \neg$ Heat)	1, 2, 3, 4, 5, 6, 7
\neg EF (Start \land EG \neg Heat)	none

So, the formula does not hold for state 1.