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Summer 2003 
Solution Set 3 
 
1. CTL equivalence/non-equivalence 
Solutions: 
a) EFp ∧  EGq, EF(p ∧  EGq) 
Not equivalent 

Counter-example:  EFp ∧  Egq satisfied, but not EF(p ∧  EGq) 

 
b) AFp ∧  AGq, AF(p ∧  AGq) 
Not equivalent 

Counter-example:  AF(p ∧  AGq) satisfied, but not AFp ∧  AGq 

 
c) AFp ∧  AGq, AG(AFp ∧  q) 
Not equivalent 

Counter-example:  AFp ∧  Agq is satisfied, but not AG(AFp ∧  q) 

 
 
 



d) AFAGp ∧  AFAGq, AF(AGp ∧  AGq) 
Equivalent 

Justification: 
i) AFAGp ∧  AFAGq ⇒ AF(AGp ∧  AGq) 
Suppose AFAGp ∧  AFAGq holds, then there is a state somewhere in all future 
paths at which p is true, and all states on all paths from that state have p true as 
well.  Furthermore, we know that there is a state somewhere in all future paths 
with q true, and that all states on all paths from that state have q true as well.  
Then we see that it must be true that somewhere on all future paths there must be 
“an intersection”, that is, there mus t be a state where both p and q are true, and all 
paths from that state have both p and q true as well.  Thus AF(AGp ∧  AGq) must 
also hold. 
 
ii) AF(AGp ∧  AGq) ⇒ AFAGp ∧  AFAGq 
Suppose that AF(AGp ∧  AGq) holds, then it must be true that there is a state 
somewhere in all future paths at which p and q hold, and all states on all paths 
from that state have both p and q true as well.  Thus, for each future path, we can 
choose the latter described state, and then it is true that p holds globally at that 
state, it is also true that q holds globally at that state.  Therefore, AFAGp ∧  
AFAGq must also hold. 
Therefore, AFAGp ∧  AFAGq and AF(AGp ∧  AGq) are equivalent. 

 
e) E[pUq] ∧  E[qUr], E[pUr] 
Not equivalent 

Counter-example:  E[pUq] ∧  E[qUr] is satisfied, but not E[pUr] 

 
 
f) A[pUq] ∧  A[qUr], A[pUr] 
Not equivalent 

Counter-example: A[pUq] ∧  A[qUr] is satisfied, but not A[pUr] 

 



2. CTL formulas and M 
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Solutions: 
a) AFq 
Holds. 
q is true at s0, and the future includes the present, thus all future paths contain q. 
 
b) AG(EF(p ∨  q)) 
Holds. 
This can be seen by noting that states s0, s1, s2, and s3 all satisfy EF(p ∨  q) – there is some 
state reachable from those states where either p or q is satisfied. 
 
c) EX(EXr)) 
Holds. 
Look at path s0, s1, s1 - this path shows the existence of a state following s0, immediately 
after which there is a state with r true. 
 
d) AG(AFq)) 
Does not hold. 
To see this consider the path s0, s1, s1, s1, s1, s1, (s1 repeating)… 
 
e) AGEXE[(p ∨  r)Uq] 
Holds. 
To see this, notice that EXE[(p ∨  r)Uq] holds for all states: 
s0 – next state is s1, then E[(p ∨  r)Uq] holds as s1, s2, s0 
s1 – next state is s1, then E[(p ∨  r)Uq] holds as s1, s2, s0 
s2 – next state is s3, then E[(p ∨  r)Uq] holds as s3, s0 
s3 – next state is s0, then E[(p ∨  r)Uq] holds as s0, s3 
 
Corrected Solution: 
f) AF(A[(p → r)Uq] 
Holds. 
A[(p → r)Uq] is equivalent to A[(¬p ∨  r)Uq] 

p,q 

p,t   r 

q,r 



To see this, we show that A[(¬p ∨  r)Uq] all paths from s0 satisfy this formula.  The trick 
is that formally “A[p U q]” means that on all paths, p occurs 0 or more times until q.  
Then we just note that q is asserted in state s0, and so A[(¬p ∨  r)Uq] holds on every path. 
 
 
3. CTL formulas for English properties 
Solution: 
 
a) “The event p always precedes the event q.” 
¬E[¬p U (q ∧  ¬p)] 
 
b) “After p, q is never true.” 
AG(p → AXAG¬q) 
 
c) “Between the events q and r, p is never true.” 
[AG(q → ¬EF(p ∧  EFr))] ∧  [AG(r → ¬EF(p ∧  E))] 
 
 
4. Pseudo-code for TRANSLATE 
Solution: 
 
function translate(formula F) { 
 case (F) {   
  F is T : return T; 
  F is (bottom) : return ¬T; 
  F is an atomic proposition : return F; 
  F is ¬ F1 : return ( ¬TRANSLATE(F) ); 
  F is F1 ´ F2 :  return (TRANSLATE(F1) ´ TRANSLATE(F2) ); 
  F is F1 ` F2 : return (¬(TRANSLATE(¬F1) ´ TRANSLATE(¬F2))); 
  F is F1 à F2 : return (TRANSLATE(¬F1 ` F2) ); 
  F is AX F1 : return (TRANSLATE(¬EX¬F1) ); 
  F is EX F1 : return (EX (TRANSLATE(F1))); 
  F is A[F1 U F2]: return (A[TRANSLATE(F1) U TRANSLATE(F2)]); 
  F is E[F1 U F2]: return (E[TRANSLATE(F1) U TRANSLATE(F2)]); 
  F is EF F1 : return ( E [T U TRANSLATE(F1)] ); 
  F is EG F1 : return (TRANSLATE(¬AF¬ F1) ); 
  F is AF F1 : return ( A [T U TRANSLATE(F1)] ); 
  F is AG F1 :  return (TRANSLATE(¬EF¬ F1) ); 
 } 
}  
 
 
5. Microwave modeling 
AG(Start →  AF Heat) 
Solutions: 
a) Formula meaning 
 

- “In all states, it is true that if start holds in a state, the in some state on all future  
    paths from that state, heat will eventually hold also” 
- We’re checking that if start is pressed, then the heat will eventually turn on. 



 
 
b) Equivalent to ¬EF(Start ∧  EG¬Heat) 
 
AG(Start → AF Heat) = ¬EF (¬(Start → AF Heat))  ~ Translate AG to EF 
   = ¬ EF (¬(¬Start ∨  AF Heat)) ~ Substitute → 
   = ¬ EF (Start ∧  (¬AF Heat))  ~ DeMorgan’s law 
   = ¬ EF (Start ∧  EG¬Heat)  ~ Translate AF to EG 
 
c) Does M,1 |= φ hold? 
 

Subformula Satisfied States 
Heat 4, 7 

¬ Heat 1, 2, 3, 5, 6 
EG ¬ Heat 1, 2, 3, 5 

Start 2, 5, 6, 7 
Start  ∧  EG¬Heat 2, 5 

EF (Start  ∧  EG¬Heat) 1, 2, 3, 4, 5, 6, 7 
¬ EF (Start  ∧  EG¬Heat) none 

 
So, the formula does not hold for state 1. 


