Structure from Motion

Computer Vision CSE P 576, Spring 2011 Richard Szeliski Microsoft Research

Today's lecture

Geometric camera calibration

- camera matrix (Direct Linear Transform)
- · non-linear least squares
- · separating intrinsics and extrinsics
- · focal length and optic center

CSE 576, Spring 2008

Structure from Motion

2

Today's lecture

Structure from Motion

- · triangulation and pose
- · two-frame methods
- factorization
- · bundle adjustment
- robust statistics

Photo Tourism

CSE 576, Spring 2008

Structure from Motion

3

Camera Calibration

Camera calibration – approaches

Possible approaches:

- 1. linear regression (least squares)
- 2. non-linear optimization
- 3. vanishing points
- 4. multiple planar patterns
- 5. panoramas (rotational motion)

CSE 576, Spring 2008

Structure from Motion

Calibration matrix	
$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \mathbf{K} \mathbf{X}_c$	
Is this form of K good enough?	
 non-square pixels (digital video) 	
• skew • radial distortion $\mathbf{K} = \begin{bmatrix} fa & s & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix}$	
CSE 576, Spring 2008 Structure from Motion 9	

Levenberg-Marquardt

CSE 576, Spring 2008

Iterative non-linear least squares [Press'92]

• Solve for minimum
$$\frac{\partial C}{\partial \mathbf{m}} = 0$$

 $\mathbf{A}\Delta\mathbf{m} = \mathbf{b}$
Hessian $\mathbf{A} = \left[\sum_{i} \sigma_{i}^{-2} \frac{\partial f}{\partial \mathbf{m}} \left(\frac{\partial f}{\partial \mathbf{m}}\right)^{T} + \cdots\right]$
error:
 $\mathbf{b} = \left[\sum_{i} \sigma_{i}^{-2} \frac{\partial f}{\partial \mathbf{m}} (u_{i} - \hat{u}_{i}) + \cdots\right]$

Structure from Motion

Camera matrix calibration

- · very simple to formulate and solve
- can recover K [R | t] from M using QR decomposition [Golub & VanLoan 96]

Disadvantages:

- · doesn't compute internal parameters
- · more unknowns than true degrees of freedom
- · need a separate camera matrix for each new view

CSE 576, Spring 2008

16

Structure from Motion

18

20

Intrinsic/extrinsic calibration

Advantages:

- can solve for more than one camera pose at a time
- · potentially fewer degrees of freedom

Disadvantages:

- more complex update rules
- need a good initialization (recover K [R | t] from M)

CSE 576, Spring 2008

Structure from Motion

5

Pose estimation and triangulation

Pose estimation

Previous initialization techniques:

- vanishing points [Caprile 90]
- planar pattern [Zhang 99]

Other possibilities

- Through-the-Lens Camera Control [Gleicher92]: differential update
- 3+ point "linear methods": [DeMenthon 95][Quan 99][Ameller 00]

CSE 576, Spring 2008

Structure from Motion

33

37

Advantage: geometrically intuitive

CSE 576, Spring 2008

Structure from Motion

36

Triangulation Method II: solve linear equations in X

· advantage: very simple

$$u_i = \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1}$$
$$v_i = \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1}$$

Method III: non-linear minimization

advantage: most accurate (image plane error)

CSE 576, Spring 2008 Structure from Motion

Structure from motion
Given many points in <i>correspondence</i> across several images, { (u_{ij}, v_{ij}) }, simultaneously compute the 3D location x _i and camera (or <i>motion</i>) parameters (K , R _j , t _j)
$egin{array}{rcl} \widehat{u}_{ij} &=& f(\mathbf{K},\mathbf{R}_j,\mathbf{t}_j,\mathbf{x}_i) \ \widehat{v}_{ij} &=& g(\mathbf{K},\mathbf{R}_j,\mathbf{t}_j,\mathbf{x}_i) \end{array}$
Two main variants: calibrated, and uncalibrated (sometimes associated with Euclidean and projective reconstructions)
CSE 576, Spring 2008 Structure from Motion 41

" <i>E</i>	
motriv" E	
maunx r	

45

Fundamental matrix

Camera calibrations are unknown

x' F x = 0 with $F = [e]_{\times} H = K'[t]_{\times} R K^{-1}$

- Solve for *F* using least squares (SVD)
 re-scale (x_p x_i') so that |x_i|≈1/2 [Hartley]
- e (epipole) is still the least singular vector of F
- *H* obtained from the other two s.v.s
- "plane + parallax" (projective) reconstruction
- use self-calibration to determine K [Pollefeys]

CSE 576, Spring 2008

```
Structure from Motion
```

Multi-frame Structure from Motion

Levenberg-Marquardt

Iterative non-linear least squares [Press'92]

Linearize measurement equations

$$\hat{u}_i = f(\mathbf{m}, \mathbf{x}_i) + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m}$$
$$\hat{v}_i = g(\mathbf{m}, \mathbf{x}_i) + \frac{\partial g}{\partial \mathbf{m}} \Delta \mathbf{m}$$

Substitute into log-likelihood equation: quadratic cost function in Am

$$\sum_{i} \sigma_{i}^{-2} (\hat{u}_{i} - u_{i} + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m})^{2} + \cdots$$

CSE 576, Spring 2008

Structure from Motion

57

Levenberg-Marquardt

