Object recognition (part 2)

CSE P 576 Larry Zitnick (<u>larryz@microsoft.com</u>)

Convolutional Nets

Yann Le Cun

The Courant Institute of Mathematical Sciences New York University http://yann.lecun.com

7	6	8	1	7	9	Ь	6	đ	1	0	0	0	0	0	0	0	0	0	0
	7	5	7	8	6	3	4	8	5	1)	1)	J	1)))	7
	í	7	9	5	1	2	\$	4	5	2	2	2	2	2	2	2	2	2	2
	8	i	9	ò	1	8	8	9	4	3	3	3	3	3	3	3	3	3	3
	6	ı	8	6	4	1	5	6	0	4	4	4	4	4	4	4	4	4	4
	5	9	2	6	5	8	1	9	7	2	5	S	S	S	S	s	S	S	S
	2	2	2	2	3	4	4	8	0	4	4	4	4	6	4	4	4	6	4
	9	3	8	0	7	З	8	5	7	7	7	7	7	7	7	7	7	7	7
	1	4	6	4	6	0	2	¥	3	8	8	8	8	8	8	8	8	8	8
ł	1	2	8	٦	6	9	8	6	1	9	q	q	9	9	9	9	9	9	9

CLASSIFIER	DEFORMATION	ERROR	Reference
nowledge-free methods (a fixed permuta	ation of the pixels wo	uld make no	o difference)
2-layer NN, 800 HU, CE		1.60	Simard et al., ICDAR 2003
3-layer NN, 500+300 HU, CE, reg		1.53	Hinton, in press, 2005
SVM, Gaussian Kernel		1.40	Cortes 92 + Many others
onvolutional nets			
Convolutional net LeNet-5,		0.80	Ranzato et al. NIPS 2006
Convolutional net LeNet-6,		0.70	Ranzato et al. NIPS 2006
raining set augmented with Affine Dist	tortions		
2-layer NN, 800 HU, CE	Affine	1.10	Simard et al., ICDAR 2003
Virtual SVM deg-9 poly	Affine	0.80	Scholkopf
Convolutional net, CE	Affine	0.60	Simard et al., ICDAR 2003
aining et augmented with Elastic Dist	ortions		
2-layer NN, 800 HU, CE	Elastic	0.70	Simard et al., ICDAR 2003
Convolutional net, CE	Elastic	0.40	Simard et al., ICDAR 2003

New York Universi

Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories

To appear in CVPR 2006

Svetlana Lazebnik (slazebni@uiuc.edu) Beckman Institute, University of Illinois at Urbana-Champaign

Cordelia Schmid (cordelia.schmid@inrialpes.fr) INRIA Rhône-Alpes, France

> Jean Ponce (ponce@di.ens.fr) Ecole Normale Supérieure, France

http://www-cvr.ai.uiuc.edu/ponce_grp

Spatial pyramid representation

· Extension of a bag of features

- Locally orderless representation at several levels of resolution
 Based on *pyramid match kernels* Grauman & Darrell (2005)
- Based on pyramid match kernels Grauman & Darrell (2005)
 Grauman & Darrell: build pyramid in feature space, discard spatial information
- Our approach: build pyramid in image space, quantize feature space

	Scene Fei-Fei & Printer - //www-	category erona (2005), Oliva & To ovr.ai.uiuc.edu/po	dataset malba (2001) nce_grp/data						
office	kitchen	living room	bedroom	I Marine Reference					
	tall building	inside city	street	highway					
the second	open country	mountain	forest	aburb					
Multi-cl	ass classification	n results (100 t	raining images	per class)					
	Weak f	features	Strong f	eatures					
	(vocabular	ry size: 16)	(vocabulary	size: 200)					
Level	Single-level	Pyramid	Single-level	Pyramid					
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6						
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ±0.5					
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3					
$3(8 \times 8)$	63.3 ± 0.8	$\textbf{66.8} \pm 0.6$	77.2 ± 0.4	80.7 ±0.3					
	Fei-Fei & Perona: 65.2%								

http://	Calte	ech101 (Fei-Fei et al. (20	dataset	tech101.html
i se		K		
6		ALA F		1
Multi-c	lass classificati Weak feat	on results (30 ures (16)	training image	s per class) ures (200)
Multi-c	lass classificati Weak feat Single-level	on results (30 ures (16) Pyramid	training image Strong feat	s per class) ures (200) Pyramid
Multi-c	lass classificati Weak feat Single-level 15.5 ±0.9	on results (30 ures (16) Pyramid	training image Strong feat Single-level 41.2 ±1.2	s per class) ures (200) Pyramid
Multi-c Level 0 1	lass classificati Weak feat Single-level 15.5 ±0.9 31.4 ±1.2	on results (30 ures (16) Pyramid 32.8 ± 1.3	Strong feature Single-level 41.2 ±1.2 55.9 ±0.9	s per class) ures (200) Pyramid 57.0 ±0.8
Multi-c Level 0 1 2	Ass classificati Weak feat Single-level 15.5 ±0.9 31.4 ±1.2 47.2 ±1.1	on results (30 ures (16) Pyramid 32.8 ± 1.3 49.3 ± 1.4	Strong feature 51 Single-level 41.2 ±1.2 55.9 ±0.9 63.6 ±0.9	s per class) ures (200) Pyramid 57.0 ±0.8 64.6 ±0.8

• Jump to Nicolas Pinto's slides. (page 29)

- A. Torralba. <u>Contextual priming for object detection</u>. IJCV 2003.
- A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. <u>Objects in Context</u>. ICCV 2007

33

Contextual Priming for Object Detection: Conclusions

- Proves the relation btw low level features and scene/context
- Can be seen as a computational evidence for the (possible) existence of low-level feature based biological attention mechanisms
- Also a warning: Whether an object recognition system understands the object or works by lots bg features.

44

Preview: Objects in Context

45

Input test image

Using labeled image datasets (MSRC, PASCAL)

Using labeled text based data (Google Sets): Contains list of related items

51

 \rightarrow A large set turns out to be useless! (anything is related)

Objects in Context: Results

Building

	No Context	Google Sets	Using Training
MSRC	45.0%	58.1%	68.4%
PASCAL	61.8%	63.4%	74.2%

Objects in Context:

Contextual Refinement

pairwise interaction. . Use CRF for this purpose.

Contextual model based on co-occurrences

Try to find the most consistent labeling with high posterior probability and high mean

 $A(i) = p(c_i|S_i)$

50

Independent segment classification

Table 1. Average Categorization Accuracy.

"Objects in Context" - Limitations

- No cue by unknown objects
- No spatial relationship reasoning
- Object detection part heavily depends on good segmentations
- Improvements using object co-occurrences are demonstrated with images where many labels are already correct. → How good is the model?

	F	Research
Finding th	ne weakest link in person detectors	
Devi Parikh	Larry Zitnick	
TTI, Chicago	Microsoft Research	

Object recognition

We've come a long way...

Dollar et al., BMVC 2009

Human performance

- Humans ~90% average precision
- Machines ~46% average precision

