Image formation and cameras

CSE P 576 Larry Zitnick (<u>larryz@microsoft.com</u>) Many slides courtesy of Steve Seitz Photography

Camera parameters

Focus - Shifts the depth that is in focus.

Focal length - Adjusts the zoom, i.e., wide angle or telephoto lens.

Aperture – Adjusts the depth of field and amount of light let into the sensor.

Exposure time – How long an image is exposed. The longer an image is exposed the more light, but could result in motion blur.

ISO – Adjusts the sensitivity of the "film". Basically a gain function for digital cameras. Increasing ISO also increases noise.

Causes of noise

Shot noise – variation in the number of photons (low light situations.)

Readout noise – Noise added upon readout of pixel. In some cases can be subtracted out.

Dark noise – Noise caused by electrons thermally generated. Depends on the temperature of device.

Sport photography

Why do they have such big lenses?

Chromatic aberration

Interlacing

Some video cameras read even lines then odd...

Rolling shutter

Some cameras read out one line at a time:

Vignetting

The corners of images are darker than the middle:

Telephoto lenses

Commonly used to make distant objects look closer than they really are.

Modeling distortion	
Project $(\hat{x}, \hat{y}, \hat{z})$ to "normalized" image coordinates	$\begin{array}{rcl} x'_n &=& \hat{x}/\hat{z} \\ y'_n &=& \hat{y}/\hat{z} \end{array}$
Apply radial distortion	$r^{2} = x'_{n}^{2} + y'_{n}^{2}$ $x'_{d} = x'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$ $y'_{d} = y'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$
Apply focal length translate image center	$ \begin{aligned} x' &= f x'_d + x_c \\ y' &= f y'_d + y_c \end{aligned} $
 To model lens distortion Use above projection operation instead of standard projection matrix multiplication 	

Other types of projection

Lots of intriguing variants... (I'll just mention a few fun ones)

