Let’s design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the *aperture*
- How does this transform the image?
Camera Obscura

The first camera
• Known to Aristotle
• How does the aperture size affect the image?

Shrinking the aperture

Why not make the aperture as small as possible?
• Less light gets through
• Diffraction effects...

Adding a lens

A lens focuses light onto the film
• There is a specific distance at which objects are “in focus”
 – other points project to a “circle of confusion” in the image
• Changing the shape of the lens changes this distance

Shrinking the aperture

Adding a lens
Lenses

A lens focuses parallel rays onto a single focal point
- focal point at a distance \(f \) beyond the plane of the lens
 - \(f \) is a function of the shape and index of refraction of the lens
- Aperture of diameter \(D \) restricts the range of rays
 - aperture may be on either side of the lens
- Lenses are typically spherical (easier to produce)

Thin lenses

Thin lens equation:
\[
\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}
\]
- Any object point satisfying this equation is in focus
- What is the shape of the focus region?
- How can we change the focus region?
- Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html (by Fu-Kwun Hwang)

Thin lens assumption

The thin lens assumption assumes the lens has no thickness, but this isn’t true…

By adding more elements to the lens, the distance at which a scene is in focus can be made roughly planar.

Depth of field

Changing the aperture size affects depth of field
- A smaller aperture increases the range in which the object is approximately in focus

Camera parameters

Focus – Shifts the depth that is in focus.

Focal length – Adjusts the zoom, i.e., wide angle or telephoto lens.

Aperture – Adjusts the depth of field and amount of light let into the sensor.

Exposure time – How long an image is exposed. The longer an image is exposed the more light, but could result in motion blur.

ISO – Adjusts the sensitivity of the “film”. Basically a gain function for digital cameras. Increasing ISO also increases noise.

Causes of noise

Shot noise – variation in the number of photons (low light situations.)

Readout noise – Noise added upon readout of pixel. In some cases can be subtracted out.

Dark noise – Noise caused by electrons thermally generated. Depends on the temperature of device.

Sport photography

Why do they have such big lenses?

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What’s the “film”? – photoreceptor cells (rods and cones) in the retina
Digital Cameras

Digital camera

CCD vs. CMOS
- Low-noise images
- Consume more power
- More and higher quality pixels
- More noise (sensor area is smaller)
- Consume much less power
- Popular in camera phones
- Getting better all the time

Mega-pixels
Are more mega-pixels better?

More mega-pixels require higher quality lens.

Colors
What colors do humans see?

RGB tristimulus values, 1931 RGB CIE
Colors
Plot of all visible colors (Hue and saturation):

Bayer pattern
Some high end video cameras have 3 CCD chips.

Demosaicing
How can we compute an R, G, and B value for every pixel?

Human eye
- pigment epithelium
- rods
- cones
- outer limiting membrane
- bipolar cells
- horizontal cells
- amacrine cells
- ganglion cells
- nerve fiber layer
- inner limiting membrane

Spectral response

3 chip CCD
Bayer CMOS

Blooming

The buckets overflow…

Chromatic aberration

Different wavelengths have different refractive indices…

Interlacing

Some video cameras read even lines then odd…
Rolling shutter

Some cameras read out one line at a time:

Vignetting

The corners of images are darker than the middle:

Projection

Readings

• Szeliski 2.1
Projection

Readings

• Szeliski 2.1

Müller-Lyer Illusion

Readings

• Szeliski 2.1

Modeling projection

The coordinate system

• We will use the pin-hole model as an approximation
• Put the optical center (Center Of Projection) at the origin
• Put the image plane (Projection Plane) in front of the COP
 Why?
• The camera looks down the negative z axis
 — we need this if we want right-handed-coordinates

Modeling projection

Projection equations

• Compute intersection with PP of ray from (x,y,z) to COP
• Derived using similar triangles (on board)

\[(x, y, z) \rightarrow (-\frac{d}{z}, -\frac{d}{z}, -d) \]

• We get the projection by throwing out the last coordinate:

\[(x, y, z) \rightarrow (-\frac{d}{z}, -\frac{d}{z}) \]
Homogeneous coordinates

Is this a linear transformation?
• no—division by z is nonlinear

Trick: add one more coordinate:

\[
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\]

Converting from homogeneous coordinates

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 w
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x/w \\
 y/w \\
 z/w
\end{pmatrix}
\]

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & -1/d & 0 \\
 0 & 0 & -1/d & 1
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
=\begin{pmatrix}
 x \\
 y \\
 -d_x \\
 -d_y
\end{pmatrix}
\]

This is known as perspective projection
• The matrix is the projection matrix

Orthographic projection

Special case of perspective projection
• Distance from the COP to the PP is infinite

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
=\begin{pmatrix}
 x \\
 y \\
 0
\end{pmatrix}
\]

• Good approximation for telephoto optics
• Also called “parallel projection”: \((x, y, z) \rightarrow (x, y)\)
• What’s the projection matrix?

Perspective Projection

How does scaling the projection matrix change the transformation?

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & -1/d & 0 \\
 0 & 0 & -1/d & 1
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 z/d \\
 1
\end{pmatrix}
=\begin{pmatrix}
 -d_x \\
 -d_y \\
 -d_x z \\
 -d_y z
\end{pmatrix}
\]

Image

World

• What’s the projection matrix?
Telephoto lenses

Commonly used to make distant objects look closer than they really are.

Variants of orthographic projection

Scaled orthographic
• Also called "weak perspective"

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1/d \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
1/d \\
1
\end{bmatrix} \Rightarrow (dx, dy)
\]

Affine projection
• Also called "paraperspective"

\[
\begin{bmatrix}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Camera parameters

A camera is described by several parameters
• Translation \(T \) of the optical center from the origin of world coords
• Rotation \(R \) of the image plane
• focal length \(f \), principle point \((x'_c, y'_c)\), pixel size \((s_x, s_y)\)
• blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

\[
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \Pi
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
\]

• The projection matrix models the cumulative effect of all parameters
• Useful to decompose into a series of operations

\[
\Pi = [R_{\text{intrins}}]
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \theta_x & 0 & 0 \\
0 & \theta_y & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

• The definitions of these parameters are not completely standardized — especially intrinsics—varies from one book to another

Distortion

No distortion
Pin cushion
Barrel

Radial distortion of the image
• Caused by imperfect lenses
• Deviations are most noticeable for rays that pass through the edge of the lens
Correcting radial distortion

Modeling distortion

Project \((\hat{x}, \hat{y}, \hat{z})\) to “normalized” image coordinates

\[
\begin{align*}
\hat{x}' &= \hat{x}/\hat{z} \\
\hat{y}' &= \hat{y}/\hat{z}
\end{align*}
\]

Apply radial distortion

\[
\begin{align*}
\hat{r}^2 &= x'^2 + y'^2 \\
x'_d &= x'_n(1 + \kappa_1 r^2 + \kappa_2 r^4) \\
y'_d &= y'_n(1 + \kappa_1 r^2 + \kappa_2 r^4)
\end{align*}
\]

Apply focal length and translate image center

\[
\begin{align*}
x' &= f x'_d + x_c \\
y' &= f y'_d + y_c
\end{align*}
\]

To model lens distortion

- Use above projection operation instead of standard projection matrix multiplication

Other types of projection

Lots of intriguing variants…
(I’ll just mention a few fun ones)

360 degree field of view…

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers…
 - See http://www.cis.upenn.edu/~kostas/gsm.html
Tilt-shift

Tilt-shift images from Olivo Barbieri and Photoshop installations.

Rotating sensor (or object)

Also known as “cyclographs”, “peripheral images”

Photofinish

Displays
LCD
Monitors have an equal number of R, G, and B elements:

Displays
Mixing colors:

Displays
Most displays cannot generate the full spectrum of visible colors: