Filtering

CSE P 576

Larry Zitnick (larryz@microsoft.com)

Image filtering

- Linear filters can have arbitrary weights.
- Typically they sum to 0 or 1, but not always.
- Weights may be positive or negative.
- Many filters aren't linear (median filter.)

It's also true:
$$f*(g*h) = (f*g)*h$$

$$f*g = g*f$$

* = ? $f*\mathcal{G}_{\sigma}*\mathcal{G}_{\sigma'}=f*\mathcal{G}_{\sigma''}$ $\sigma''=\sqrt{\sigma^2+\sigma'^2}$ More blur than either individually (but less than $\sigma''=\sigma+\sigma'$)

Combining Gaussian filters

Not all filters are separable.

Aliasing can arise when you sample a continuous signal or image occurs when your sampling rate is not high enough to capture the amount of detail in your image Can give you the wrong signal/image—an alias formally, the image contains structure at different scales called "frequencies" in the Fourier domain the sampling rate must be high enough to capture the highest frequency in the image

