Motion Estimation

Today's Readings
• Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199)
• Numerical Recipes (Newton-Raphson), 9.4 (first four pages)

http://www.sandlotscience.com/Distortions/Breathing_objects.htm
http://www.sandlotscience.com/Ambiguous/barberpole.htm

Why estimate motion?
Lots of uses
• Track object behavior
• Correct for camera jitter (stabilization)
• Align images (mosaics)
• 3D shape reconstruction
• Special effects

Optical flow
Problem definition: optical flow

H(x, y) → I(x, y)

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem
 – given a pixel in H, look for nearby pixels of the same code in I

Key assumptions
• color constancy: a point in H looks the same in I
 – For grayscale images, this is brightness constancy
• small motion: points do not move very far

This is called the optical flow problem
Optical flow constraints (grayscale images)

Let's look at these constraints more closely
• brightness constancy: \(Q: \) what's the equation?
• small motion: \((u\) and \(v\) are less than 1 pixel)
 - suppose we take the Taylor series expansion of \(I:\)
 \[
 I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms}
 \]
 \[
 \approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v
 \]

Optical flow equation

Combining these two equations

\[
0 = I(x, y) - H(x, y);
\]
\[
= I(x, y) + I_x u + I_y v - H(x, y);
\]
\[
= (I(x, y) - H(x, y)) + I_x u + I_y v;
\]
\[
\approx I_x u + I_y v;
\]
\[
\approx I_x + \nabla I \cdot [u \ v]
\]

In the limit as \(u\) and \(v\) go to zero, this becomes exact

\[
0 = I_x + \nabla I \cdot [u \ v]
\]

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?
• The component of the flow in the gradient direction is determined
• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm
Aperture problem

Solving the aperture problem

How to get more equations for a pixel?
• Basic idea: impose additional constraints
 – most common is to assume that the flow field is smooth locally
 – one method: pretend the pixel’s neighbors have the same (u,v)
 » If we use a 5x5 window, that gives us 25 equations per pixel!

\[\mathbf{Q} = I_x(p_0) + \nabla I_y(p_0) \cdot [u \ v] \]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= \begin{bmatrix}
I_x(p_1) \\
I_x(p_2) \\
\vdots \\
I_x(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
\]

\[A_{25x2} \begin{bmatrix} d \end{bmatrix} = t_{25x1} \]

• Basic idea: impose additional constraints
 – most common is to assume that the flow field is smooth locally
 – one method: pretend the pixel’s neighbors have the same (u,v)

RGB version

How to get more equations for a pixel?
• Basic idea: impose additional constraints
 – most common is to assume that the flow field is smooth locally
 – one method: pretend the pixel’s neighbors have the same (u,v)

\[\mathbf{Q} = I_x(p_0)[0, 1, 2] + \nabla I_y(p_0)[0, 1, 2] \cdot [u \ v] \]

\[
\begin{bmatrix}
I_x(p_1)[0] & I_x(p_1)[1] & I_x(p_1)[2] \\
I_x(p_2)[0] & I_x(p_2)[1] & I_x(p_2)[2] \\
\vdots & \vdots & \vdots \\
I_x(p_{25})[0] & I_x(p_{25})[1] & I_x(p_{25})[2]
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= \begin{bmatrix}
I_x(p_1)[0] \\
I_x(p_2)[0] \\
\vdots \\
I_x(p_{25})[0]
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
\]

\[A_{25x3} \begin{bmatrix} d \end{bmatrix} = t_{25x1} \]

Lukas-Kanade flow

Prob: we have more equations than unknowns
\[A_{25x3} d = t_{25x1} \]

Solution: solve least squares problem
• minimum least squares solution given by solution (in d) of:

\[(A^T A) d = A^T t \]

\[\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= \begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[A^T A \begin{bmatrix} d \end{bmatrix} = A^T t \]

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade (1981)
 – described in Trucco & Verri reading
Conditions for solvability

- Optimal \((u, v)\) satisfies Lucas-Kanade equation

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix} =
- \begin{bmatrix}
\sum I_x I_l \\
\sum I_y I_l
\end{bmatrix}
\begin{bmatrix}
A^T A \\
A^T l
\end{bmatrix}
\]

When is This Solvable?

- \(A^TA\) should be invertible
- \(A^TA\) should not be too small due to noise
 - eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^TA\) should not be too small
- \(A^TA\) should be well-conditioned
 - \(\lambda_1/\lambda_2\) should not be too large (\(\lambda_1\) = larger eigenvalue)

Eigenvectors of \(A^TA\)

\[
A^TA = \begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_y I_x & \sum I_y I_y
\end{bmatrix} = \begin{bmatrix}
I_x & I_y \\
I_y & I_x
\end{bmatrix} = \sum I(x,y) = \sum \nabla I(\nabla I)^T
\]

Suppose \((x,y)\) is on an edge. What is \(A^TA\)?

- gradients along edge all point the same direction
- gradients away from edge have small magnitude

\[
\sum \nabla I(\nabla I)^T \approx k \nabla I(\nabla I)^T
\]

- \(\nabla I\) is an eigenvector with eigenvalue \(k||\nabla I||^2\)
- What’s the other eigenvector of \(A^TA\)?
 - let \(N\) be perpendicular to \(\nabla I\)
 - \(\sum \nabla I(\nabla I)^T \) \(N = 0\)
 - \(N\) is the second eigenvector with eigenvalue 0

The eigenvectors of \(A^TA\) relate to edge direction and magnitude

Edge

- large gradients, all the same
- large \(\lambda_1\), small \(\lambda_2\)

Low texture region

- small \(\lambda_1\), small \(\lambda_2\)
High textured region

\[\sum \nabla I(\nabla I)^T\]

- gradients are different, large magnitudes
- large \(\lambda_1\), large \(\lambda_2\)

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose \(A' A\) is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

Recall our small motion assumption

\[0 = I(x + u, y + v) - H(x, y);\]
\[\approx I(x, y) + I_x u + I_y v - H(x, y)\]

This is not exact

- To do better, we need to add higher order terms back in:

\[= I(x, y) + I_x u + I_y v + \text{higher order terms} - H(x, y)^{,}\]

This is a polynomial root finding problem

- Can solve using Newton’s method
 - Also known as Newton-Raphson method
 - 1D case on board
 - Today’s reading (first four pages)
- Lukas-Kanade method does one iteration of Newton’s method
 - Better results are obtained via more iterations
Iterative Refinement

Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field
 - use image warping techniques
3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?
- Probably not—it’s much larger than one pixel (2nd order terms dominate)
- How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H
Gaussian pyramid of image I
Motion tracking

Suppose we have more than two images

- How to track a point through all of the images?
 - In principle, we could estimate motion between each pair of consecutive frames
 - Given point in first frame, follow arrows to trace out its path
 - Problem: DRIFT
 » small errors will tend to grow and grow over time—the point will drift way off course

Feature Tracking

- Choose only the points ("features") that are easily tracked
- How to find these features?
 - windows where $\sum \nabla f(\nabla f)^2$ has two large eigenvalues
- Called the Harris Corner Detector
Tracking features

Feature tracking
- Compute optical flow for that feature for each consecutive H, I

When will this go wrong?
- Occlusions—feature may disappear
 - need mechanism for deleting, adding new features
- Changes in shape, orientation
 - allow the feature to deform
- Changes in color
- Large motions
 - will pyramid techniques work for feature tracking?

Handling large motions

L-K requires small motion
- If the motion is much more than a pixel, use discrete search instead

$$H(x, y) \quad I(x, y)$$

- Given feature window W in H, find best matching window in I
- Minimize sum squared difference (SSD) of pixels in window

$$\min_{(u,v)} \left\{ \sum_{(x,y) \in W} (I(x + u, y + v) - H(x, y))^2 \right\}$$

- Solve by doing a search over a specified range of (u,v) values
 - this (u,v) range defines the search window

Tracking Over Many Frames

Feature tracking with m frames
1. Select features in first frame
2. Given feature in frame i, compute position in $i+1$
3. Select more features if needed
4. $i = i + 1$
5. If $i < m$, go to step 2

Issues
- Discrete search vs. Lucas Kanade?
 - depends on expected magnitude of motion
 - discrete search is more flexible
- Compare feature in frame i to $i+1$ or frame 1 to $i+1$?
 - affects tendency to drift...
- How big should search window be?
 - too small: lost features. Too large: slow

Incorporating Dynamics

Idea
- Can get better performance if we know something about the way points move
- Most approaches assume constant velocity
 $$x_{i+1} = x_i$$
 $$x_{i+1} = 2x_i - x_{i-1}$$
 or constant acceleration
 $$\ddot{x}_{i+1} = \ddot{x}_i$$
 $$x_{i+1} = 3x_i - 3x_{i-1} + x_{i-2}$$
- Use above to predict position in next frame, initialize search
Feature tracking demo

Oxford video

MPEG—application of feature tracking
- http://www.pixeltools.com/pixweb2.html

Image alignment

Goal: estimate single (u,v) translation for entire image
- Easier subcase: solvable by pyramid-based Lukas-Kanade

Application: Rotoscoping (demo)