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Outline

= Probability review
» Random Variables and Events
» Joint / Marginal / Conditional Distributions
* Product Rule, Chain Rule, Bayes’ Rule
* Probabilistic Inference

* Probabilistic sequence models (and inference)
» Markov Chains
» Hidden Markov Models
» Particle Filters



Probability Review

= Probability
» Random Variables
» Joint and Marginal Distributions
= Conditional Distribution

* Product Rule, Chain Rule, Bayes’ Rule
* |Inference

= You'll need all this stuff A LOT for the next few
weeks, so make sure you go over it now!



Inference in Ghostbusters

= A ghostis in the grid
somewhere

= Sensor readings tell
how close a square
IS to the ghost
»= On the ghost: red
= 1 or 2 away: orange

= 3 or4 away: yellow
= 5+ away: green
= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty

» R =lsitraining?
= D = How long will it take to drive to work?
= L =Where am I?

= \We denote random variables with capital letters

= Random variables have domains
» Rin {true, false}
= Din|[0, 1)
» L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distribution

Unobserved random variables have distributions

P(T)
T P
hot | 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

P(W =rain) = 0.1

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

Musthave: Vz P(X =z)>0 and » P(X=uz)=1
Wi




Joint Distributions

= Ajoint distribution over a set of random variables: X, X, ... X,
specifies a real number for each outcome (ie each assignment):

P(X1{=z21,Xo=xo,...Xn = xn) P(T, W)

P(z1,x2,...7n) LI S
Mt obeu: hot [ sun | 0.4

uSt Obey. P(:Cl,ZCQ, . 33n) >0 hot | rain | 0.1

cold | sun 0.2

>y P(x1,z0,...20) = 1

cold | rain 0.3

(x1,22,...2n)

= Sijze of distribution if n variables with domain sizes d?

= A probabilistic model is a joint distribution over variables of interest
= For all but the smallest distributions, impractical to write out



Events

= An outcome is a joint assignment for all the variables

(33173327 <. 3377/)

= An eventis a set E of outcomes

P(E) = > P(z1...zn)

(CUl..SUn)EE

* From a joint distribution, we can
calculate the probability of any event

» Probability that it's hot AND sunny?
= Probability that it's hot?
= Probability that it's hot OR sunny?

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Quiz: Events

= P(+x, +y) ?

=0.2

= P(+x) ?

=0.2+0.3=0.5
= P(-yOR+x)?

=02+03+0.1=0.6

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables

= Marginalization (summing out): Combine collapsed rows by adding
P(X1=uz1) =) P(X1=uz1,Xp=u1)p)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

L2

P(T)

T P
hot 0.5
cold 0.5

P(W)

W P
sun 0.6

rain 0.4




Quiz: Marginal Distribution

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

———
P(z) =) P(xz,y)
Yy

——
P(y) = > P(z,y)

P(X)
X P
+X 0.5
X 0.5
P(Y)
Y P
+y 0.6
y 0.4
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Conditional Probability

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P0b)

P(T, W) Po)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Conditional Probability

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(a,b
P(alb) = (a,b)
P(b)
P(T, W) o
T W P . N PW=sT=¢c) 02
hot | sun | 04 PV =l =9="50=9 ~os ~°*
hot rain 0.1 _%
cold sun 0.2 =P(W=s,T=c)+P(W=nr,T =c)
cold rain 0.3 = 0.2+4+0.3 =0.5
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

- P(W|T = hot) P(T,W)
W P T W P
- sun 0.8 hot sun 0.4
; rain 0.2 hot rain 0.1
E: P(W|T = cold) cold sun 0.2
W = cold rain 0.3
sun 0.4
P(x1,x2)
rain 0.6 P(z1|z2) = P ()




Quiz: Conditional Distribution

= P(+x | +y)?
=0.2/(0.2+0.4)=1/3

P(X,Y)
X Y P
+X +y 0.2 = P(-x|+y)?
+X -y 0.3 =04/(02+04)=2/3
X +y 0.4
X y 0.1

" Py | +x)?
=0.3/(0.2+0.3)=3/5

15



= A trick to get a whole conditional distribution at once:
» Select the joint probabilities matching the evidence

Normalization Trick

= Normalize the selection (make it sum to one)

P(T,W)

Select Normalize
T W P |—> pP(T,r) = P(T|r)
hot sun | 0.4 T R P T P
hot rain | 0.1 | hot | rain | 0.1{] hot | 0.25
cold sun | 0.2] |cold| rain | 0.3|| cold | 0.75
cold rain | 0.3
= Why does this work? Sum of selection is P(evidence)! (P(r), here)
P(xq,x P(xzq,x
Plafra) = ;(1332)2) - le(Pzﬂﬁjﬂ)ﬁz)




To Normalize

= (Dictionary) To bring or restore to aj[normal condition

N

All entries sum to ONE

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

u Examp|e1 [ Examplez

W P Normalize w P T W P T W
Normalize
sun 0.2 — (<0 0.4 hot sun 20 hot sun 0.4
. _ ) hot rain 5 ' hot rain 0.1
rain | 03 | £2=05 rain | 0.6 7 = 50
cold sun 10 cold sun 0.2
cold rain 15 cold rain 0.3
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Probabilistic Inference

= Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(on time | no reported accidents) = 0.90
* These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Probabilistic Inference

Diagnosis
Speech recognition
Tracking objects

Robot mapping
Genetics

Error correcting codes
... lots more!
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Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

" Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

0.11 0.11

0.11

0.11

.
.




Inference by Enumeration

= General case:

= Evidence variables: E;...Ey =eq1...¢ X1, X0, ... Xn
= Query* variable: Q |
= Hidden variables: H;...H, All variables

= We want: P(Qley ...ex)
= First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

P(Q.hy.. heeq...
P(Qael"'ek) — hlzh \\(Q 1 \;81 8}&
X1, X0, ... Xn

= Finally, normalize the remaining entries to conditionalize



Inference by Enumeration

= P(sun)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter, hot)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Problems with Enumeration

= Obvious problems:
» Worst-case time complexity O(d")

= Space complexity O(d") to store the
joint distribution

= Solutions

= Better techniques
= Better representation
» Simplifying assumptions
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The Product Rule

= Sometimes have conditional distributions but want the joint

P(zly) =

= Example:

P(W)

(> Plz,y) = P(=ly)P(y)

W

P

sun

0.8

rain

0.2

P(x,y)
P(y)

P(D|W)

D W | P
wet | sun| 0.1
dry {sun| 0.9
wet |rain| 0.7
dry {rain| 0.3

P(D,W)

D W P
wet | sun | 0.08
dry | sun | 0.72
wet | rain | 0.14
dry | rain | 0.06




The Product Rule

= Sometimes have conditional distributions but want the joint

Plaly) = & lfgg;’;f) (= P(z,y) = P(aly)P(y)

= Example:

P(W) P(D|W) P(D,W)

O (©)




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions?

P(x1,x0,23) = P(x1)P(z2|z1)P(x3|z1,22)

P(x1,z2,...zn) = || P(ailzy .. 2-1)
7

= Why is this always true?



Bayes' Rule

= Two ways to factor a joint distribution over two variables:

P(x,y) = P(x|y)P(y) = P(y|x)P(x) That's my rule!j

= Dividing, we get:
P(yl|z)
P(zly) =
Y=

= Why is this at all helpful?
» | ets us build a conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later

P(x)

* |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause) P(Cause)
P(Effect)

P(Cause|Effect) =

= Example:

= mis meningitis, s is stiff neck P(slm) = 0.8 Example
P(?TL) = 0.0001 B gives

P(s) =0.1

—

_ P(sjm)P(m) _ 0.8 x 0.0001
 P(s) - 0.1

= Note: posterior probability of meningitis still very small

P(m|s) = 0.0008

= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes Rule

. P(D|W)
= Given:
P(W) D W P
R p wet sun 0.1
<un 08 dry sun 0.9
ain 02 wet rain 0.7
dry rain | 0.3

= Whatis P(W | dry) ?

P(sun|dry) = P(dry|sun) P(sun) / P(dry) a 0.9 * 0.8 = 0.072
P(wet|dry) = P(dry|rain) P(rain) / P(dry) a 0.3 * 0.2 = 0.06

Last step, normalize to produce P(W|dry)



Ghostbusters, Revisited

Let’'s say we have two distributions: o o B o
» Prior distribution over ghost location: P(G) | | |
= Let’s say this is uniform
0.11 || 011 |f 011

» Sensor reading model: P(R | G)
= Given: we know what our sensors do
* R =reading color measured at (1,1)
= E.g. P(R=yellow | G=(1,1))=0.1
We can calculate the posterior
distribution P(G]|r) over ghost locations
given a reading using Bayes’ rule: ﬂ
P(glr) o< P(r|g)P(g) .m.
<0.01 0.17




Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(z)P(y)

» This says that their joint distribution factors into a product two
simpler distributions

= Another form:

v,y P(zly) = P(x)

= Wewrite: X || Y

* Independence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent
» What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P(T)
T P
hot 0.5
Py (T, W) cold 0.5
T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3 P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

 P(X1,Xp,... Xp)

\




Conditional Independence

P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
» P(+catch | +toothache, -cavity) = P(+catch| —cavity)

Catch is conditionally independent of Toothache given Cavity:

» P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
» P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
*= One can be derived from the other easily



Conditional Independence

» Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z 1 P(z,ylz) = P(z[2) P(y|z)

XY\ Z
Vi, y,z o P(x]z,y) = P(x|2) |

= \What about this domain:
= Traffic

= Umbrella
= Raining



Probability Summary

" . P(z,y)
o | P(zly) =
Conditional probability (zy) P(y)
* Product rule P(z,y) = P(zly)P(y)
= Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3]X1,X2)...
= ]_l P(X;|X1,..... X;_1)
i=1

= X, Yindependentif and onlyif: Vz.,y: P(z,y) = P(z)P(y)

= XandY are conditionally independent given Z if and only if: X1UY|Z
Va,y,z . P(x,y|z) = P(xz|2)P(y|z)
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