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Outline
§ Reinforcement Learning  

§ Passive Learning  
§ TD Updates  
§ Q-value iteration 
§ Q-learning 
§ Linear function approximation



What is it doing?



Reinforcement Learning

§ Reinforcement learning: 
§ Still have an MDP: 

§ A set of states s ∈ S 
§ A set of actions (per state) A 
§ A model T(s,a,s’) 
§ A reward function R(s,a,s’) 

§ Still looking for a policy π(s)

§ New twist: don’t know T or R 
§ I.e. don’t know which states are good or what the actions do 
§ Must actually try actions and states out to learn



Example: Animal Learning

§ RL studied experimentally for more than 60 
years in psychology 

§ Example: foraging

§ Rewards: food, pain, hunger, drugs, etc. 
§ Mechanisms and sophistication debated

§ Bees learn near-optimal foraging plan in field of 
artificial flowers with controlled nectar supplies 

§ Bees have a direct neural connection from nectar 
intake measurement to motor planning area



Example: Backgammon

§ Reward only for win / loss in 
terminal states, zero 
otherwise 

§ TD-Gammon learns a function 
approximation to V(s) using a 
neural network 

§ Combined with depth 3 
search, one of the top 3 
players in the world 

§ You could imagine training 
Pacman this way… 

§ … but it’s tricky!   (It’s also P3)



Reinforcement Learning

§ Basic idea: 
§ Receive feedback in the form of rewards 
§ Agent’s utility is defined by the reward function 
§ Must learn to act so as to maximize expected rewards



What is the dot doing?



Key Ideas for Learning

§ Online vs. Batch 
§ Learn while exploring the world, or learn from 

fixed batch of data 
§ Active vs. Passive 

§ Does the learner actively choose actions to 
gather experience? or, is a fixed policy 
provided? 

§ Model based vs. Model free 
§ Do we estimate T(s,a,s’) and R(s,a,s’), or just 

learn values/policy directly



Detour: Sampling Expectations
§ Want to compute an expectation weighted by P(x): 

§ Model-based: estimate P(x) from samples, compute expectation 

§ Model-free: estimate expectation directly from samples 

§ Why does this work?  Because samples appear with the right 
frequencies!



Model-Based Learning

§ Idea: 
§ Learn the model empirically (rather than values) 
§ Solve the MDP as if the learned model were correct

§ Empirical model learning 
§ Simplest case: 

§ Count outcomes for each s,a 
§ Normalize to give estimate of T(s,a,s’) 
§ Discover R(s,a,s’) the first time we experience (s,a,s’) 

§ More complex learners are possible (e.g. if we know 
that all squares have related action outcomes, e.g. 
“stationary noise”)



Example: Model-Based Learning

§ Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done)

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100  

(done)



Model-free Learning

§ Big idea: why bother learning T? 
§ Question: how can we compute V if we don’t 

know T? 
§ Use direct estimation to sample complete 

trials, average rewards at end 
§ Use sampling to approximate the 

Bellman updates, compute new values 
during each learning step

π(s)

s

s, π(s)

s’



Simple Case: Direct Estimation
§ Average the total reward for 

every trial that visits a state:

x

y

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done)

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done)
V(1,1) ~ (92 + -106) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1 

+100

-100



Problems with Direct Evaluation

§ What’s good about direct evaluation? 
§ It is easy to understand 
§ It doesn’t require any knowledge of T and R 
§ It eventually computes the correct average 

value using just sample transitions 
§ What’s bad about direct evaluation? 

§ It wastes information about state connections 
§ Each state must be learned separately 
§ So, it takes long time to learn
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Towards Better Model-free Learning

§ Simplified Bellman updates to 
calculate V for a fixed policy: 
§ New V is expected one-step-look-

ahead using current V 
§ Unfortunately, need T and R

π(s)

s

s, π(s)

s, π(s),s’

s’

Review: Model-Based Policy Evaluation



Sample Avg to Replace Expectation?

§ Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) π(s)

s

s, π(s)

s1’s2’ s3’



Temporal Difference Learning

§ Big idea: why bother learning T? 
§ Update V each time we experience a transition 

§ Temporal difference learning (TD) 
§ Policy still fixed! 
§ Move values toward value of whatever 

successor occurs: running average!

π(s)

s

s, π(s)

s’



Detour: Exp. Moving Average

§ Exponential moving average  
§ Makes recent samples more important 

§ Forgets about the past (distant past values were wrong anyway) 
§ Easy to compute from the running average 

§ Decreasing learning rate can give converging averages



    TD Policy Evaluation

Take γ = 1, α = 0.5, V0(<4,3>)=100, V0(<4,2>)=-100, V0 = 0 otherwise 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done)

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done)

+100

-100

Updates for V(<3,3>): 

 V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5 

 V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475 

 V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]

x

y



Problems with TD Value Learning

§ However, if we want to turn our value 
estimates into a policy, we’re sunk:

a

s

s, a

s,a,s’
s’

§ TD value leaning is model-free for 
policy evaluation (passive 
learning)

§ Idea: learn Q-values directly 
§ Makes action selection model-free too!



Q-Learning Update
§ Q-Learning: sample-based Q-value iteration 

§ Learn Q*(s,a) values 
§ Receive a sample (s,a,s’,r) 
§ Consider your old estimate: 
§ Consider your new sample estimate: 

§ Incorporate the new estimate into a running average:



Q-Learning: Fixed Policy



Exploration / Exploitation

§ Several schemes for action selection

§ Problems with random actions? 
§ You do explore the space, but keep thrashing 

around once learning is done 
§ One solution: lower ε over time 
§ Another solution: exploration functions

§ Simplest: random actions (ε greedy) 
§ Every time step, flip a coin 
§ With probability ε, act randomly 
§ With probability 1-ε, act according to current policy



Q-Learning: ε Greedy



Exploration Functions

§ Exploration function 
§ Takes a value estimate and a count, and returns an 

optimistic utility, e.g.                                    (exact form not 
important) 

§ Exploration policy π(s’)=

§ When to explore 
§ Random actions: explore a fixed amount 
§ Better idea: explore areas whose badness is not (yet) established

vs.



Q-Learning Final Solution

§ Q-learning produces tables of q-values:



Q-Learning Properties
§ Amazing result: Q-learning converges to optimal policy 

§ If you explore enough 
§ If you make the learning rate small enough 
§ … but not decrease it too quickly! 
§ Not too sensitive to how you select actions (!) 

§ Neat property: off-policy learning 
§ learn optimal policy without following it

S E S E



Q-Learning

§ In realistic situations, we cannot possibly learn 
about every single state! 
§ Too many states to visit them all in training 
§ Too many states to hold the q-tables in memory 

§ Instead, we want to generalize: 
§ Learn about some small number of training states 

from experience 
§ Generalize that experience to new, similar states 
§ This is a fundamental idea in machine learning, and 

we’ll see it over and over again



Example: Pacman

§ Let’s say we discover 
through experience 
that this state is bad:

§ In naïve q learning, 
we know nothing 
about related states 
and their q values:

§ Or even this third one!



Feature-Based Representations

§ Solution: describe a state using 
a vector of features (properties) 
§ Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state

§ Example features: 
§ Distance to closest ghost 
§ Distance to closest dot 
§ Number of ghosts 
§ 1 / (dist to dot)2 

§ Is Pacman in a tunnel? (0/1) 
§ …… etc. 
§ Is it the exact state on this slide?

§ Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food)



Which Algorithm?
Q-learning, no features, 50 learning trials:



Which Algorithm?
Q-learning, no features, 1000 learning trials:



Which Algorithm?
Q-learning, simple features, 50 learning trials:



Linear Feature Functions
§ Using a feature representation, we can write a 

q function (or value function) for any state 
using a few weights:

§ Disadvantage: states may share features but 
actually be very different in value!

§ Advantage: our experience is summed up in 
a few powerful numbers



Function Approximation

§ Q-learning with linear q-functions: 

§ Intuitive interpretation: 
§ Adjust weights of active features 
§ E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features 

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

Example:#Q[Pacman#

[demo#–#RL#pacman]#
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Ordinary Least Squares (OLS)
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Minimizing Error

Approximate q update:

Imagine we had only one point x with features f(x):

“target” “prediction”
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Policy Search*

§ Problem: often the feature-based policies that work well 
aren’t the ones that approximate V / Q best 
§ E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions 

§ We’ll see this distinction between modeling and prediction again 
later in the course 

§ Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards 

§ This is the idea behind policy search, such as what 
controlled the upside-down helicopter



Policy Search*

§ Simplest policy search: 
§ Start with an initial linear value function or q-function 
§ Nudge each feature weight up and down and see if 

your policy is better than before 

§ Problems: 
§ How do we tell the policy got better? 
§ Need to run many sample episodes! 
§ If there are a lot of features, this can be impractical



Policy Search*

§ Advanced policy search: 
§ Write a stochastic (soft) policy: 

§ Turns out you can efficiently approximate the 
derivative of the returns with respect to the 
parameters w (details in the book, optional material) 

§ Take uphill steps, recalculate derivatives, etc.



Policy Search*



MDP and RL
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The#Story#So#Far:#MDPs#and#RL#

Known#MDP:#Offline#Solu)on#

Goal # # # #Technique#
#
Compute#V*,#Q*,#π* # #Value#/#policy#itera)on#
#
Evaluate#a#fixed#policy#π # #Policy#evalua)on#
#
#

Unknown#MDP:#Model[Based# Unknown#MDP:#Model[Free#

Goal # # #Technique#
#
Compute#V*,#Q*,#π* #VI/PI#on#approx.#MDP#
#
Evaluate#a#fixed#policy#π #PE#on#approx.#MDP#
#
#

Goal # # #Technique#
#
Compute#V*,#Q*,#π* #Q[learning#
#
Evaluate#a#fixed#policy#π #Value#Learning#
#
#


