
CSEP 573: Artificial
Intelligence 

Reinforcement Learning

Luke Zettlemoyer

Many slides over the course adapted from either Ali Farhadi,
Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore

1

Outline
§ Reinforcement Learning

§ Passive Learning
§ TD Updates
§ Q-value iteration
§ Q-learning
§ Linear function approximation

What is it doing?

Reinforcement Learning

§ Reinforcement learning:
§ Still have an MDP:

§ A set of states s ∈ S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy π(s)

§ New twist: don’t know T or R
§ I.e. don’t know which states are good or what the actions do
§ Must actually try actions and states out to learn

Example: Animal Learning

§ RL studied experimentally for more than 60
years in psychology

§ Example: foraging

§ Rewards: food, pain, hunger, drugs, etc.
§ Mechanisms and sophistication debated

§ Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

§ Bees have a direct neural connection from nectar
intake measurement to motor planning area

Example: Backgammon

§ Reward only for win / loss in
terminal states, zero
otherwise

§ TD-Gammon learns a function
approximation to V(s) using a
neural network

§ Combined with depth 3
search, one of the top 3
players in the world

§ You could imagine training
Pacman this way…

§ … but it’s tricky! (It’s also P3)

Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must learn to act so as to maximize expected rewards

What is the dot doing?

Key Ideas for Learning

§ Online vs. Batch
§ Learn while exploring the world, or learn from

fixed batch of data
§ Active vs. Passive

§ Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

§ Model based vs. Model free
§ Do we estimate T(s,a,s’) and R(s,a,s’), or just

learn values/policy directly

Detour: Sampling Expectations
§ Want to compute an expectation weighted by P(x):

§ Model-based: estimate P(x) from samples, compute expectation

§ Model-free: estimate expectation directly from samples

§ Why does this work? Because samples appear with the right
frequencies!

Model-Based Learning

§ Idea:
§ Learn the model empirically (rather than values)
§ Solve the MDP as if the learned model were correct

§ Empirical model learning
§ Simplest case:

§ Count outcomes for each s,a
§ Normalize to give estimate of T(s,a,s’)
§ Discover R(s,a,s’) the first time we experience (s,a,s’)

§ More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.g.
“stationary noise”)

Example: Model-Based Learning

§ Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Model-free Learning

§ Big idea: why bother learning T?
§ Question: how can we compute V if we don’t

know T?
§ Use direct estimation to sample complete

trials, average rewards at end
§ Use sampling to approximate the

Bellman updates, compute new values
during each learning step

π(s)

s

s, π(s)

s’

Simple Case: Direct Estimation
§ Average the total reward for

every trial that visits a state:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
V(1,1) ~ (92 + -106) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100

Problems with Direct Evaluation

§ What’s good about direct evaluation?
§ It is easy to understand
§ It doesn’t require any knowledge of T and R
§ It eventually computes the correct average

value using just sample transitions
§ What’s bad about direct evaluation?

§ It wastes information about state connections
§ Each state must be learned separately
§ So, it takes long time to learn

15

Towards Better Model-free Learning

§ Simplified Bellman updates to
calculate V for a fixed policy:
§ New V is expected one-step-look-

ahead using current V
§ Unfortunately, need T and R

π(s)

s

s, π(s)

s, π(s),s’

s’

Review: Model-Based Policy Evaluation

Sample Avg to Replace Expectation?

§ Who needs T and R? Approximate the
expectation with samples (drawn from T!) π(s)

s

s, π(s)

s1’s2’ s3’

Temporal Difference Learning

§ Big idea: why bother learning T?
§ Update V each time we experience a transition

§ Temporal difference learning (TD)
§ Policy still fixed!
§ Move values toward value of whatever

successor occurs: running average!

π(s)

s

s, π(s)

s’

Detour: Exp. Moving Average

§ Exponential moving average
§ Makes recent samples more important

§ Forgets about the past (distant past values were wrong anyway)
§ Easy to compute from the running average

§ Decreasing learning rate can give converging averages

 TD Policy Evaluation

Take γ = 1, α = 0.5, V0(<4,3>)=100, V0(<4,2>)=-100, V0 = 0 otherwise

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

+100

-100

Updates for V(<3,3>):

 V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5

 V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475

 V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]

x

y

Problems with TD Value Learning

§ However, if we want to turn our value
estimates into a policy, we’re sunk:

a

s

s, a

s,a,s’
s’

§ TD value leaning is model-free for
policy evaluation (passive
learning)

§ Idea: learn Q-values directly
§ Makes action selection model-free too!

Q-Learning Update
§ Q-Learning: sample-based Q-value iteration

§ Learn Q*(s,a) values
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:

Q-Learning: Fixed Policy

Exploration / Exploitation

§ Several schemes for action selection

§ Problems with random actions?
§ You do explore the space, but keep thrashing

around once learning is done
§ One solution: lower ε over time
§ Another solution: exploration functions

§ Simplest: random actions (ε greedy)
§ Every time step, flip a coin
§ With probability ε, act randomly
§ With probability 1-ε, act according to current policy

Q-Learning: ε Greedy

Exploration Functions

§ Exploration function
§ Takes a value estimate and a count, and returns an

optimistic utility, e.g. (exact form not
important)

§ Exploration policy π(s’)=

§ When to explore
§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not (yet) established

vs.

Q-Learning Final Solution

§ Q-learning produces tables of q-values:

Q-Learning Properties
§ Amazing result: Q-learning converges to optimal policy

§ If you explore enough
§ If you make the learning rate small enough
§ … but not decrease it too quickly!
§ Not too sensitive to how you select actions (!)

§ Neat property: off-policy learning
§ learn optimal policy without following it

S E S E

Q-Learning

§ In realistic situations, we cannot possibly learn
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states

from experience
§ Generalize that experience to new, similar states
§ This is a fundamental idea in machine learning, and

we’ll see it over and over again

Example: Pacman

§ Let’s say we discover
through experience
that this state is bad:

§ In naïve q learning,
we know nothing
about related states
and their q values:

§ Or even this third one!

Feature-Based Representations

§ Solution: describe a state using
a vector of features (properties)
§ Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

§ Example features:
§ Distance to closest ghost
§ Distance to closest dot
§ Number of ghosts
§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)
§ …… etc.
§ Is it the exact state on this slide?

§ Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

Which Algorithm?
Q-learning, no features, 50 learning trials:

Which Algorithm?
Q-learning, no features, 1000 learning trials:

Which Algorithm?
Q-learning, simple features, 50 learning trials:

Linear Feature Functions
§ Using a feature representation, we can write a

q function (or value function) for any state
using a few weights:

§ Disadvantage: states may share features but
actually be very different in value!

§ Advantage: our experience is summed up in
a few powerful numbers

Function Approximation

§ Q-learning with linear q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Example:#Q[Pacman#

[demo#–#RL#pacman]#

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Regression

Prediction Prediction

Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update:

Imagine we had only one point x with features f(x):

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Policy Search*

§ Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

§ We’ll see this distinction between modeling and prediction again
later in the course

§ Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

§ This is the idea behind policy search, such as what
controlled the upside-down helicopter

Policy Search*

§ Simplest policy search:
§ Start with an initial linear value function or q-function
§ Nudge each feature weight up and down and see if

your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

Policy Search*

§ Advanced policy search:
§ Write a stochastic (soft) policy:

§ Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

§ Take uphill steps, recalculate derivatives, etc.

Policy Search*

MDP and RL

46

The#Story#So#Far:#MDPs#and#RL#

Known#MDP:#Offline#Solu)on#

Goal # # # #Technique#
#
Compute#V*,#Q*,#π* # #Value#/#policy#itera)on#
#
Evaluate#a#fixed#policy#π # #Policy#evalua)on#
#
#

Unknown#MDP:#Model[Based# Unknown#MDP:#Model[Free#

Goal # # #Technique#
#
Compute#V*,#Q*,#π* #VI/PI#on#approx.#MDP#
#
Evaluate#a#fixed#policy#π #PE#on#approx.#MDP#
#
#

Goal # # #Technique#
#
Compute#V*,#Q*,#π* #Q[learning#
#
Evaluate#a#fixed#policy#π #Value#Learning#
#
#

