CSEP 573: Artificial
Intelligence

Reinforcement Learning

Luke Zettlemoyer

Many slides over the course adapted from either Ali Farhadi,
Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore

Outline

= Reinforcement Learning
» Passive Learning
= TD Updates
= Q-value iteration
= Q-learning
= Linear function approximation

What is it doing”?

(=) Step Delay: 0.10000 (4 <= Epsilon: 0.500 (+

& Discount: 0.800 il - Learning Rate: 0.800 -

Reinforcement Learning

= Reinforcement learning:
= Still have an MDP:

= Aset of statess €S
= A set of actions (per state) A Q /

= Amodel T(s,a,s’)

= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don’t know T or R

= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Example: Animal Learning

» RL studied experimentally for more than 60
years in psychology

» Rewards: food, pain, hunger, drugs, etc.
* Mechanisms and sophistication debated

= Example: foraging
* Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

= Bees have a direct neural connection from nectar
iIntake measurement to motor planning area

Example: Backgammon

Reward only for win / loss in
terminal states, zero
otherwise

TD-Gammon learns a function
approximation to V(s) using a
neural network

Combined with depth 3 T TR
search, one of the top 3 |
players in the world

%@

25 242322212019 18 17 16 15 14 13

You could imagine training
Pacman this way...

... butit’s tricky! (It's also P3)

Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must learn to act so as to maximize expected rewards

»[Agent

l'ewal'd action
r i
! o,

state

s | Environment

| v
—
|

Key ldeas for Learning

= Online vs. Batch

= L earn while exploring the world, or learn from
fixed batch of data

= Active vs. Passive

* Does the learner actively choose actions to
gather experience? or, is a fixed policy
provided?

= Model based vs. Model free

* Do we estimate T(s,a,s’) and R(s,a,s’), or just
learn values/policy directly

Detour: Sampling Expectations

= Want to compute an expectation weighted by P(x):
Elf(z)] = 2., P(z)f()

= Model-based: estimate P(x) from samples, compute expectation

Ly N Pl(x A
A @ E[f(z)] = X2, P(x)f(x)

P(x) = count(x)/k
= Model-free: estimate expectation directly from samples

= Why does this work? Because samples appear with the right
frequencies!

Model-Based Learning

= |dea:
» Learn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.qg.
“stationary noise”)

Example: Model-Based Learning

y
= Episodes: 3| == = +1oo\
1,1) up -1 1,1) up -1
(1,1) up (1,1) up , ' 1 —
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 1 ' I
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 2 3 4
(3,3) right -1 (3,2) up -1 y=1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3
(4,3) exit +100 |
T(<2,3>, right, <3,3>)=2/2
(done)

Model-free Learning

VT (s) — 3 T(s,7(s), 8") [R(s,7(s), s") + V()]

= Big idea: why bother learning T7?

(s)
= Question: how can we compute V if we don'’t :n(s)
know T7?
» Use direct estimation to sample complete R

trials, average rewards at end

= Use sampling to approximate the
Bellman updates, compute new values
during each learning step

Simple Case: Direct Estimation

y
= Average the total reward for \ :I
. . — | = | == [[+100
every trial that visits a state:
(1,1) up -1 (1,1) up - - f f -100
(1,2) up -1 (1,2) up
(1,2) up -1 (1,3) right -1 1 f = | |
(1,3) right -1 (2,3) right -1 1 2 3 4
(2,3) right -1 (3,3) right -1
. y=1,R=-1
(3,3) right -1 (3,2) up -1
(3,2) up -1 (4,2) exit -100 V(1.1) ~ (92 +-106) / 2 = -7
(3,3) right -1 (done)
(4,3) exit +100 V(3,3)~ (99 +97 +-102) / 3 =313
(done)

Problems with Direct Evaluation

= WWhat's good about direct evaluation?
" |t is easy to understand
» |t doesn’t require any knowledge of T and R

= |t eventually computes the correct average
value using just sample transitions

= \What's bad about direct evaluation?
= |t wastes information about state connections
* Each state must be learned separately
» S0, it takes long time to learn

15

Towards Better Model-free Learning

Review: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look- s, 1(s),s'\
ahead using current V

= Unfortunately, need T and R

Vg (s) =0

Vi1 (s) — S T(s,m(s), 8)[R(s, m(5), 8) + 7V (")

Sample Avg to Replace Expectation?

Vi1(s) « D T(s,m(s),s)[R(s,7(s),s") + V" (s)]

= Who needs T and R? Approximate the
expectation with samples (drawn from T!) i(s)
sample; = R(s,m(s), 1) + Vi (s})

S(anl(%Q — R(S, 71—(3), 9’2) 4 Al‘/zﬂ-(QIQ)

A S2, A 51, A 33’

sampley, = R(s,m(s),s}) + vVi"(s}.)

1
Viia(s) = 2 sample;

Temporal Difference Learning

VT(s) « ZT(* m(s),s')[R(s,7(s),s") +~yV7(s")]

= Big idea: why bother learning T? S
= Update V each time we experience a transition mi(s)
= Temporal difference learning (TD) S, n(8)

= Policy still fixed!

= Move values toward value of whatever ’
successor occurs: running average! A s

sample = R(s,7(s),s") +~4V™(s")
VT(s) «— (1 —a)V™(s) + (a)sample
VT(s) «— V™(s) + a(sample — V™ (s))

Detour: Exp. Moving Average

= Exponential moving average
= Makes recent samples more important
.)2
Ty + (l o O") *Tp—1 T (l o Q’) Tp—2 T ...
l1+(1—a)+(1—a)?+...

£ n

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

i?n — (1 — CY) ’ jngl + & - Ln

= Decreasing learning rate can give converging averages

1D Policy Evaluation

VTi(s) — (1 —a)V™(s) + « [R('Sa m(s),s") + VVW(S’)}

y
(1,1) up -1 (1,1) up -1 3 —— —_— — +100\
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 2 |} b || -100
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 f -— | a— | -
(3,3) right -1 (3,2) up -1
(3,2) up -1 (4,2) exit 100 X
<) UP ’ Updates for V(<3,3>):
3,3) right -1 d
(3,3) rig (done) V(<3,3>) = 0.5%0 + 0.5*[-1 + 1*0] = -0.5
4,3) exit +100
(4,3) exi V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475
(done)

V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]
Take y = 1, o = 0.5, Vo(<4,3>)=100, Vo(<4,2>)=-100, Vo = 0 otherwise

Problems with TD Value Learning

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

m(s) = argmax Q™ (s, a)
a
Q*(S, (1,) = Z T(S, a, .S,) [R(S a, S,) + “,'"""’*('S,)]

» |dea: learn Q-values directly
= Makes action selection model-free too!

Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s,a) = Z T(s,a,s") [R(s, a,s’) +~ I’TLE/)X Q*(s', u’)}

= L earn Q*(s,a) values
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + ~ max Q(s',a)
a

» |[ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-Learning: Fixed Policy

]
ey s

LY

Exploration / Exploitation

= Several schemes for action selection

= Simplest: random actions (¢ greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

* You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

Q-Learning: ¢ Greedy

Exploration Functions

= \When to explore

= Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an
optimistic utility, e.g. f(u,n) = u -+ k/n (exact form not
important)

= Exploration policy (s’)=

maxQ;(s’,a’) vs. max f(Q;(s,a"), N(s,a"))
(

a

= Q-learni

Q-Learning Final Solution

ng produces tables of g-value

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
= Not too sensitive to how you select actions (!)

= Neat property: off-policy learning
= |learn optimal policy without following it

M

S iE S

Q-Learning

* In realistic situations, we cannot possibly learn
about every single state!
= Too many states to visit them all in training
* Too many states to hold the g-tables in memory

* Instead, we want to generalize:

= |_earn about some small number of training states
from experience
= Generalize that experience to new, similar states

= This is a fundamental idea in machine learning, and
we’ll see it over and over again

Example: Pacman

= | et's say we discover
through experience
that this state is bad:

* |In naive g learning,
we know nothing
about related states
and their g values:

= QOr even this third one!

Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)

= Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)
. etc.
= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)

Which Algorithm?

Q-learning, no features, 50 learning trials:

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Which Algorithm?

Q-learning, simple features, 50 learning trials:

Linear Feature Functions

» Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) = w1 f1(s) +wafa(s) + ...+ wnfn(s)

Q(s,a) = w1 f1(s,a)Fwaf2(s,a)+...+wnfn(s,a)

= Advantage: our experience is summed up in
a few powerful numbers

= Disadvantage: states may share features but
actually be very different in value!

Function Approximation

Q(s,a) = wy f1(s,a)Fwafa(s,a)+...+wnfn(s,a)

= Q-learning with linear g-functions:

transition = (s,a,r,s’)

difference = [r 4 v max Q(s',d)| — Q(s,a)

a

Q(s,a) — Q(s,a) + o [difference] Exact Q's

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* [ntuitive interpretation:
= Adjust weights of active features
. 81 if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgs7(s,a)
fpor(s, NORTH) = 0.5
fasr(s,NORTH) = 1.0

/
. p— O S. A —]_
Q(s’,-) Q(s,a) =+ 0 — NORTH
R(QQ’ (l'q, (g,) — _500 ‘].' — _5(—)(—)

correction = —501
"Il,?l)(’)'[' «— 40 (8% [—501] 05
WwasT < —1.0 + X [—501] 1.0

Q(s,a) = 3.0fpor(s,a) — 3.0fgsr(s, a)

Linear Regression

407

20

f1(zx)

Prediction Prediction

y = wo + wy f1(x) y; = wo + w1 f1(x) + wo fo(x)

Ordinary Least Squares (OLS)

7

2
total error = Z (y; — ’,I/Af,j)z =) (Ui - Z’U’kfk(ilfz‘)>
i k

. Error or “residual”
Observation Yy

Prediction 37

Minimizing Error

Imagine we had only one point x with features f(x):

2
1
error(w) == 5 (y - Z u"kfl;('rc))
L

0 error(w)

5 — <y — Z w,\.fk(:zr)) fm(x)
Wm, .

Wm — Wm + « (g - Z W, fk(:r)) fm(x)
k

Approximate q update:

“target” “prediction”

W — Wm + o [1' + v max Q(s',a") — Q(s, a,)] fm(s,a)

25~

20—

15—

10—

-10—

Overfitting

Degree 15 polynomial

Policy Search”

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter

Policy Search”

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
» |f there are a lot of features, this can be impractical

Policy Search”

= Advanced policy search:
= Write a stochastic (soft) policy:

Tw(8) o i Wifi(s,a)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

= Take uphill steps, recalculate derivatives, etc.

MDP and RL

Known MDP: Offline Solution

N\

J

Goal Technique
Compute V*, Q*, * Value / policy iteration
Evaluate a fixed policy Policy evaluation
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, * VI/Pl on approx. MDP Compute V*, Q*, t* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning

~

J

46

