CSEP 573: Artificial Intelligence

Bayesian Networks: Inference

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Bayesian Networks Inference
 - Exact Inference: Variable Elimination
 - Approximate Inference: Sampling

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable:QHidden variables: $H_1 \dots H_r$

$$X_1, X_2, \ldots X_n$$

All variables

- We want: $P(Q|e_1 \dots e_k)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

- Finally, normalize the remaining entries to conditionalize
- **Obvious problems:**
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

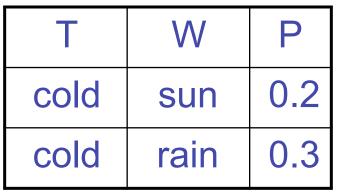
Review: Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- Sums to 1

P(T, W)

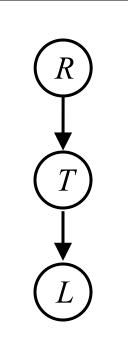
Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3



- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!



P(R)		
+r	0.1	
-r 0.9		
-1 0.9		

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r +t 0.1			
-r	-t	0.9	

First query: P(L)

$$P(l) = \sum_{t} \sum_{r} P(l|t)P(t|r)P(r)$$

P(L T)			
+t	+	0.3	
+t	0.7		
-t	0.1		
-t	-	0.9	

Variable Elimination Outline

- Maintain a set of tables called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r 0.9		

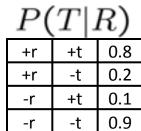
P(T R)				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

P(L	T)
(-	- /

+	0.3
-	0.7
+	0.1
-	0.9
	-

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

P(R)			
+r 0.1			
-r 0.9			

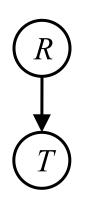


$P(+\ell T)$		
+t	+	0.3
-t	+	0.1

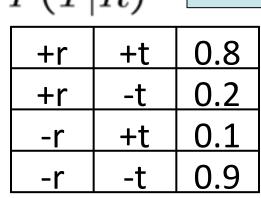
VE: Alternately join factors and eliminate variables

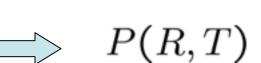
Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R



$$\begin{array}{c|c}
P(R) \times I \\
+r & 0.1 \\
-r & 0.9
\end{array}$$

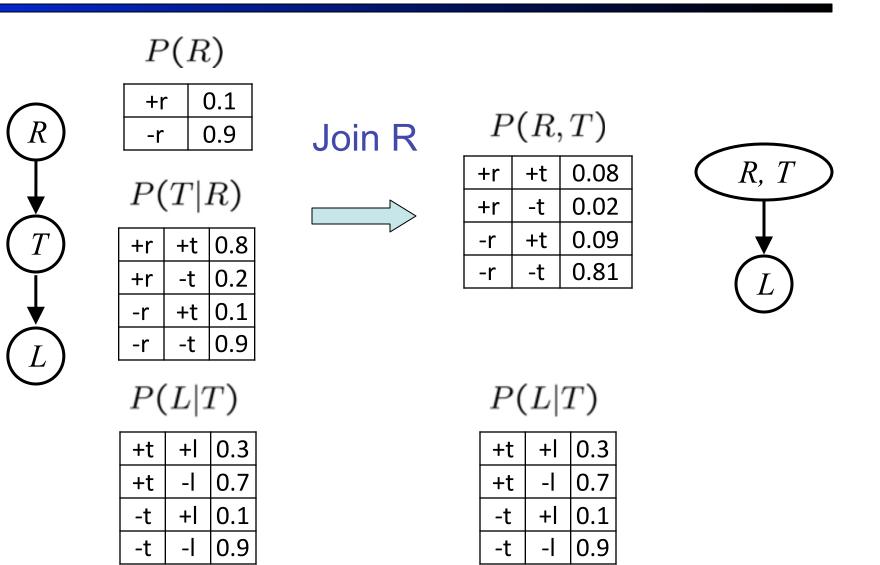




+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

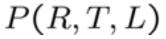
• Computation for each entry: pointwise products $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins



Example: Multiple Joins

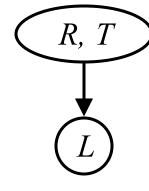
Join T



+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

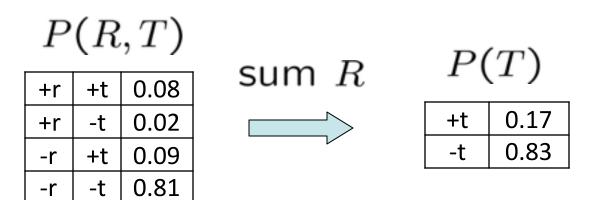
$$P(R,T)$$
+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

$$\begin{array}{c|c} P(L|T) \\ +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \end{array}$$

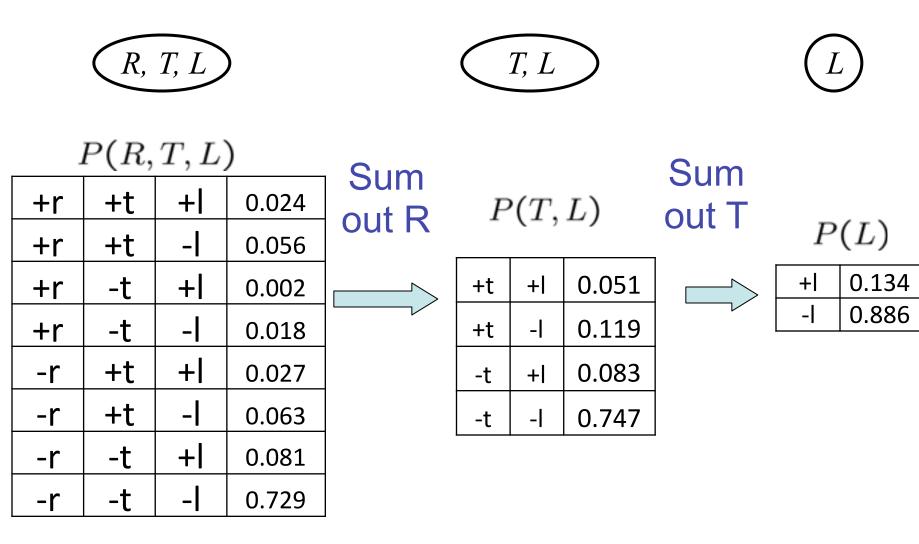


Operation 2: Eliminate

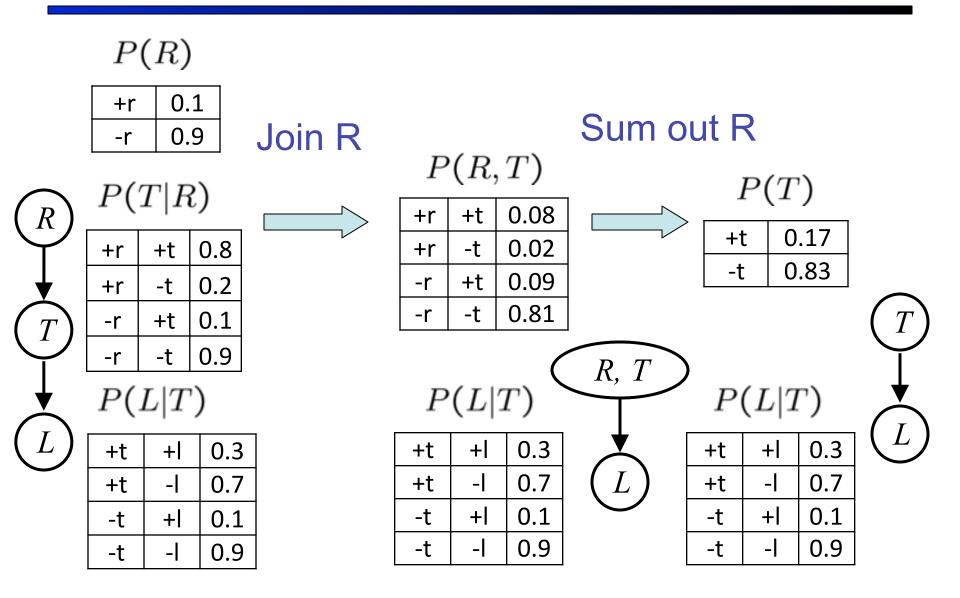
- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:



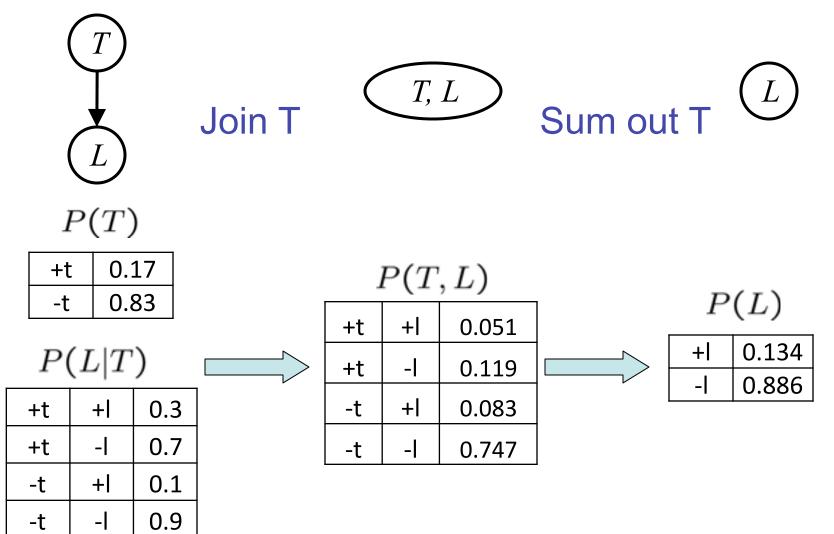
Multiple Elimination



P(L) : Marginalizing Early!



Marginalizing Early (aka VE*)

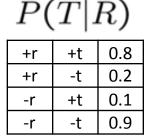


* VE is variable elimination

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)
+r	0.1
-r	0.9



1 (.	$L_{ }$)
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

-t

0.9

P(L|T)

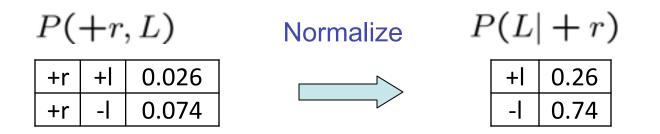
• Computing P(L|+r), the initial factors become:

$P(\cdot$	+r)	F	P(T	' +	$\cdot r)$		P(.	L T	')
+r	0.1		+r	+t	0.8		+t	+	0.3
		-	+r	-t	0.8 0.2		+t	-1	0.3 0.7
				-		-	-t	+1	0.1

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:



- To get our answer, just normalize this!
- That's it!

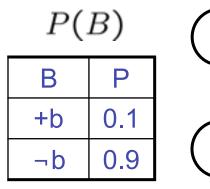
General Variable Elimination

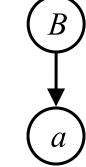
• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Bayes Rule

Start / Select





$P(A B) \rightarrow P(a B)$	P(A	B)-	P(a	B)
-----------------------------	-----	-----	-----	----

В	А	Ρ
+b	+a	0.8
		0.0
D	٦a	0.2
ъ Г	+a	0.1
4	0	0.0
.0	'a	0.5

Join on B

Normalize

a, *B*

P(a,B)

Α	В	Ρ
+a	+b	80.0
+a	Ч	0.09

P(B|a)

Α	В	Ρ
+a	+b	8/17
+a	Ч	9/17

Example

Query: P(B|j,m)

Choose A

$$P(A|B,E)$$

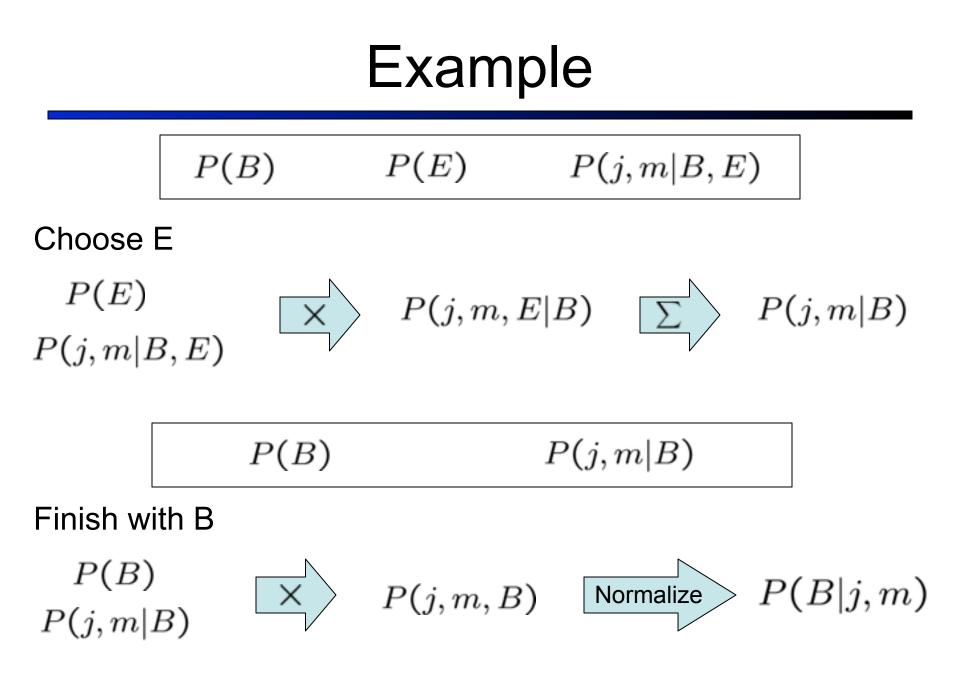
$$P(j|A)$$

$$P(m|A)$$

$$P(m|A)$$

$$P(M|B,E)$$

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$



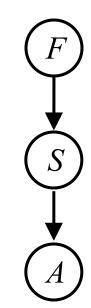
Exact Inference: Variable Elimination

Remaining Issues:

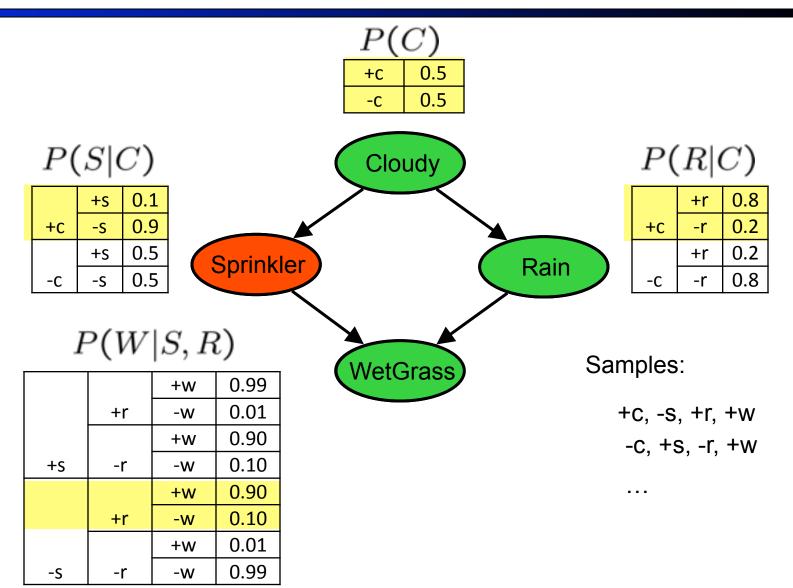
- Complexity: exponential in tree width (size of the largest factor created)
- Best elimination ordering? NP-hard problem
- What you need to know:
 - Should be able to run it on small examples, understand the factor creation / reduction flow
 - Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We have seen a special case of VE already
 - HMM Forward Inference

Approximate Inference

- Simulation has a name: sampling
- Sampling is a hot topic in machine learning, and it's really simple
- Basic idea:
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P
- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)



Prior Sampling



Prior Sampling

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

• Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$

• Then
$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$$

= $S_{PS}(x_1, \dots, x_n)$
= $P(x_1 \dots x_n)$

I.e., the sampling procedure is consistent

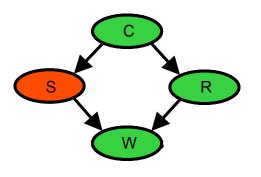
Example

• We'll get a bunch of samples from the BN:

- +c, -s, +r, +w
- +c, +s, +r, +w
- -c, +s, +r, -w
- +c, -s, +r, +w
- -C, -S, -r, +W

If we want to know P(W)

- We have counts <+w:4, -w:1>
- Normalize to get P(W) = <+w:0.8, -w:0.2>
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
- Fast: can use fewer samples if less time (what's the drawback?)



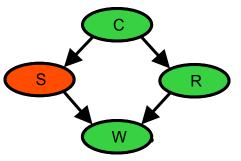
Rejection Sampling

Let's say we want P(C)

- No point keeping all samples around
- Just tally counts of C as we go

Let's say we want P(C| +s)

- Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)



+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W

Problem with rejection sampling:

- If evidence is unlikely, you reject a lot of samples
- You don't exploit your evidence as you sample

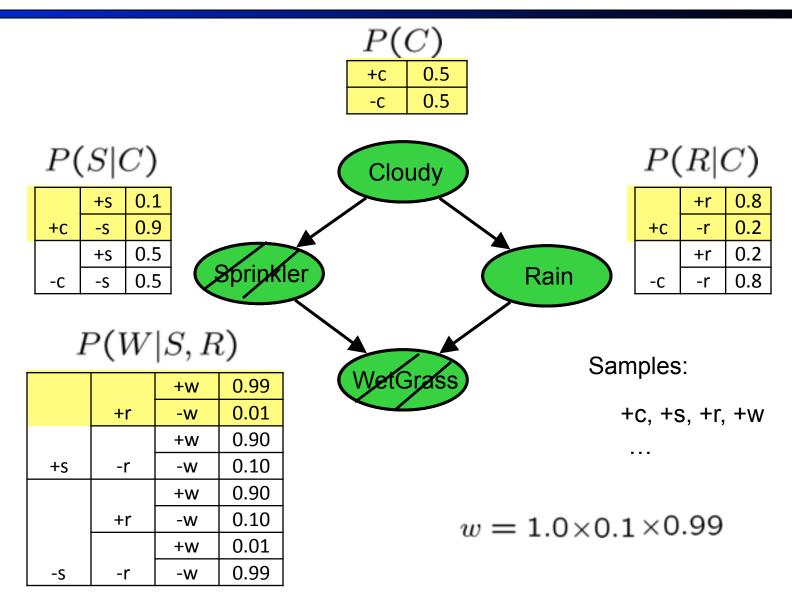
-b +a

-b. -a

+b, +a

+b, +a

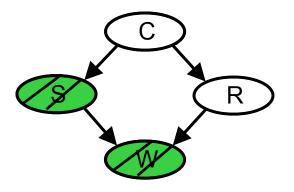
- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents



Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

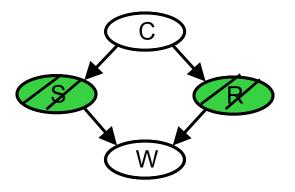
• Now, samples have weights $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \text{Parents}(E_i))$



• Together, weighted sampling distribution is consistent $S_{WS}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$ = P(z, e)

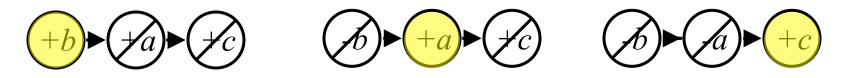
Likelihood weighting is good

- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable



Markov Chain Monte Carlo*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- *Gibbs Sampling*: resample one variable at a time, conditioned on the rest, but keep evidence fixed.



- Properties: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.