## CSEP 573: Artificial Intelligence

### **Bayesian Networks: Inference**

### Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

# Outline

- Bayesian Networks Inference
  - Exact Inference: Variable Elimination
  - Approximate Inference: Sampling

## **Probabilistic Inference**

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
  - P(on time | no reported accidents) = 0.90
  - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
  - P(on time | no accidents, 5 a.m.) = 0.95
  - P(on time | no accidents, 5 a.m., raining) = 0.80
  - Observing new evidence causes beliefs to be updated

# Inference by Enumeration

- General case:
  - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query\* variable:QHidden variables: $H_1 \dots H_r$

$$X_1, X_2, \ldots X_n$$

All variables

- We want:  $P(Q|e_1 \dots e_k)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

- Finally, normalize the remaining entries to conditionalize
- **Obvious problems:** 
  - Worst-case time complexity  $O(d^n)$
  - Space complexity  $O(d^n)$  to store the joint distribution

# Variable Elimination

- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables
  - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

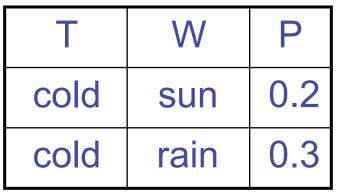
# Review: Factor Zoo I

### Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- Sums to 1

### P(T, W)

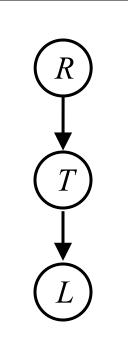
| Т    | W    | Ρ   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



- Selected joint: P(x,Y)
  - A slice of the joint distribution
  - Entries P(x,y) for fixed x, all y
  - Sums to P(x)

# Example: Traffic Domain

- Random Variables
  - R: Raining
  - T: Traffic
  - L: Late for class!



| P(R)   |     |  |
|--------|-----|--|
| +r     | 0.1 |  |
| -r 0.9 |     |  |
| -1 0.9 |     |  |

| P(T R)    |    |     |  |
|-----------|----|-----|--|
| +r        | +t | 0.8 |  |
| +r        | -t | 0.2 |  |
| -r +t 0.1 |    |     |  |
| -r        | -t | 0.9 |  |

First query: P(L)

$$P(l) = \sum_{t} \sum_{r} P(l|t)P(t|r)P(r)$$

| P(L T) |     |     |  |
|--------|-----|-----|--|
| +t     | +   | 0.3 |  |
| +t     | 0.7 |     |  |
| -t     | 0.1 |     |  |
| -t     | -   | 0.9 |  |

# Variable Elimination Outline

- Maintain a set of tables called factors
- Initial factors are local CPTs (one per node)

| P(R)   |     |  |
|--------|-----|--|
| +r     | 0.1 |  |
| -r 0.9 |     |  |
|        |     |  |

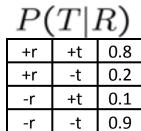
| P(T R) |    |     |  |  |
|--------|----|-----|--|--|
| +r     | +t | 0.8 |  |  |
| +r     | -t | 0.2 |  |  |
| -r     | +t | 0.1 |  |  |
| -r     | -t | 0.9 |  |  |

| P(L | T)  |
|-----|-----|
| (-  | - / |

| + | 0.3 |
|---|-----|
| - | 0.7 |
| + | 0.1 |
| - | 0.9 |
|   | -   |

- Any known values are selected
  - E.g. if we know  $L = +\ell$ , the initial factors are

| P(R)   |  |  |  |
|--------|--|--|--|
| +r 0.1 |  |  |  |
| -r 0.9 |  |  |  |
|        |  |  |  |

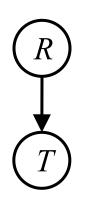


| $P(+\ell T)$ |   |     |
|--------------|---|-----|
| +t           | + | 0.3 |
| -t           | + | 0.1 |

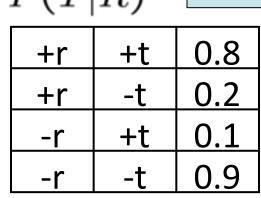
VE: Alternately join factors and eliminate variables

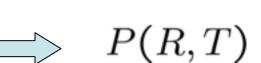
# **Operation 1: Join Factors**

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved
- Example: Join on R



$$\begin{array}{c|c}
P(R) \times I \\
+r & 0.1 \\
-r & 0.9
\end{array}$$



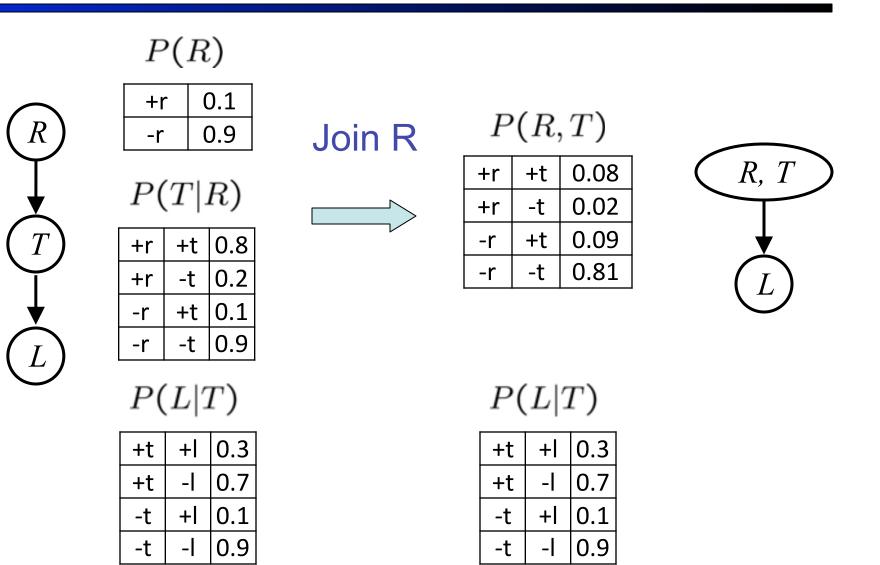




| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

• Computation for each entry: pointwise products  $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$ 

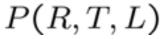
## **Example: Multiple Joins**



## **Example: Multiple Joins**

Join T

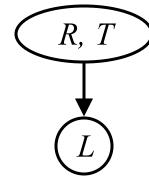




| +r | +t | + | 0.024 |
|----|----|---|-------|
| +r | +t | - | 0.056 |
| +r | -t | + | 0.002 |
| +r | -t | - | 0.018 |
| -r | +t | + | 0.027 |
| -r | +t | - | 0.063 |
| -r | -t | + | 0.081 |
| -r | -t | - | 0.729 |

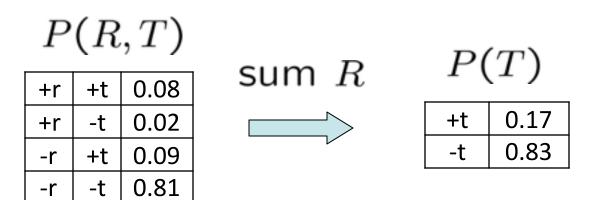
$$P(R,T)$$
+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

$$\begin{array}{c|c} P(L|T) \\ +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \end{array}$$

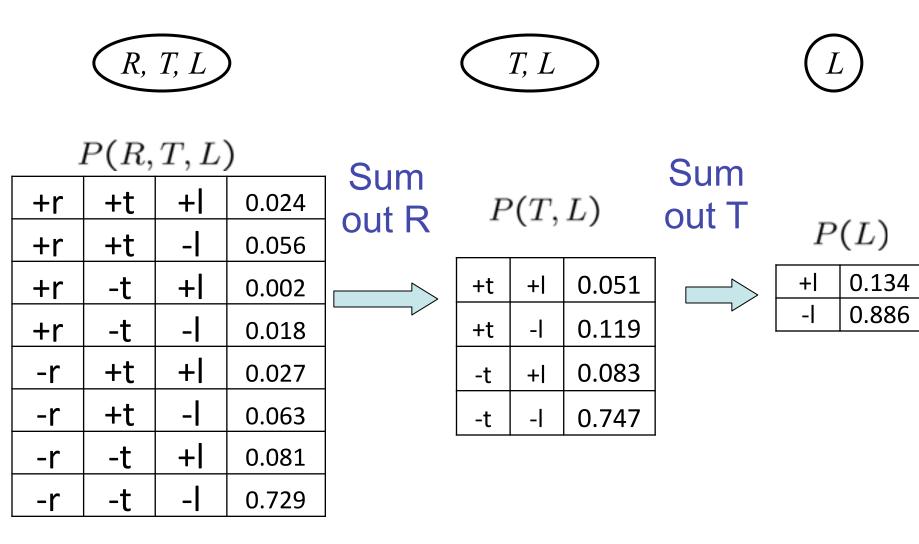


# **Operation 2: Eliminate**

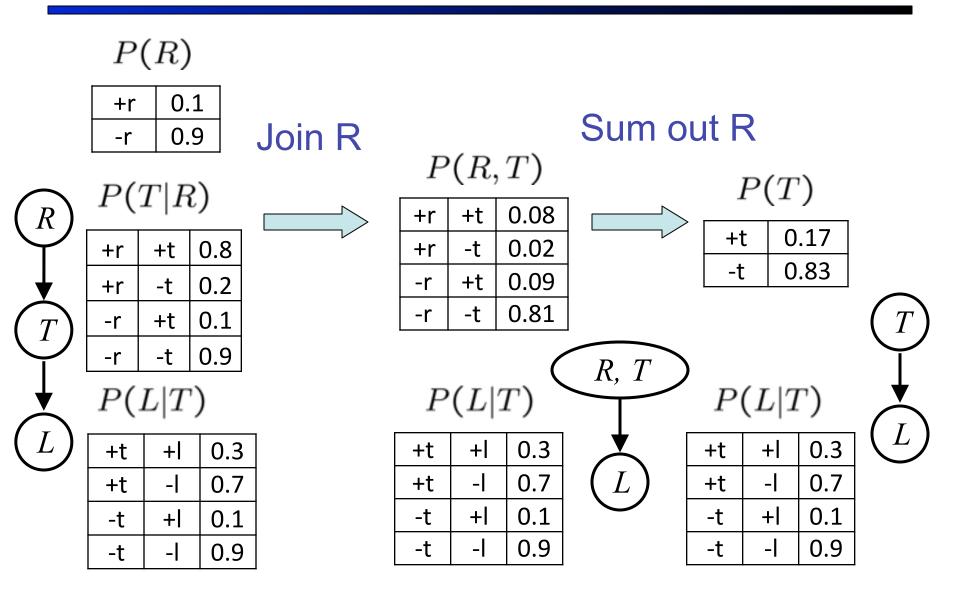
- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:



## **Multiple Elimination**



# P(L) : Marginalizing Early!



# Marginalizing Early (aka VE\*)

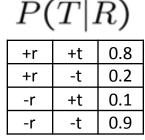


\* VE is variable elimination

### Evidence

- If evidence, start with factors that select that evidence
  - No evidence uses these initial factors:

| P( | R)  |
|----|-----|
| +r | 0.1 |
| -r | 0.9 |
|    |     |



| 1 (. | $L_{ }$ | )   |
|------|---------|-----|
| +t   | +       | 0.3 |
| +t   | -       | 0.7 |
| -t   | +       | 0.1 |
| -t   | -       | 0.9 |

-t

0.9

P(L|T)

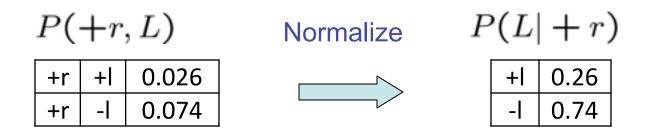
• Computing P(L|+r), the initial factors become:

| $P(\cdot$ | +r) | F | P(T | '  + | $\cdot r)$ |   | P(. | L T | ')         |
|-----------|-----|---|-----|------|------------|---|-----|-----|------------|
| +r        | 0.1 |   | +r  | +t   | 0.8        |   | +t  | +   | 0.3        |
|           |     | - | +r  | -t   | 0.8<br>0.2 |   | +t  | -1  | 0.3<br>0.7 |
|           |     |   |     | -    |            | - | -t  | +1  | 0.1        |

We eliminate all vars other than query + evidence

## **Evidence II**

- Result will be a selected joint of query and evidence
  - E.g. for P(L | +r), we'd end up with:



- To get our answer, just normalize this!
- That's it!

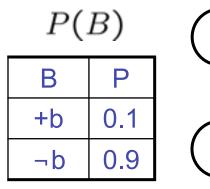
## **General Variable Elimination**

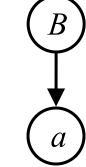
• Query: 
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
  - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
  - Pick a hidden variable H
  - Join all factors mentioning H
  - Eliminate (sum out) H
- Join all remaining factors and normalize

# Variable Elimination Bayes Rule

Start / Select





| $P(A B) \rightarrow P(a B)$ | P(A | B)- | P(a | B) |
|-----------------------------|-----|-----|-----|----|
|-----------------------------|-----|-----|-----|----|

| В      | А  | Ρ   |
|--------|----|-----|
| +b     | +a | 0.8 |
|        |    | 0.0 |
| D      | ٦a | 0.2 |
| ъ<br>Г | +a | 0.1 |
| 4      | 0  | 0.0 |
| .0     | 'a | 0.5 |

Join on B

Normalize

*a*, *B* 

P(a,B)

| Α  | В  | Ρ    |
|----|----|------|
| +a | +b | 80.0 |
| +a | Ч  | 0.09 |

P(B|a)

| Α  | В  | Ρ    |
|----|----|------|
| +a | +b | 8/17 |
| +a | Ч  | 9/17 |

### Example

### Query: P(B|j,m)



#### Choose A

$$P(A|B,E)$$

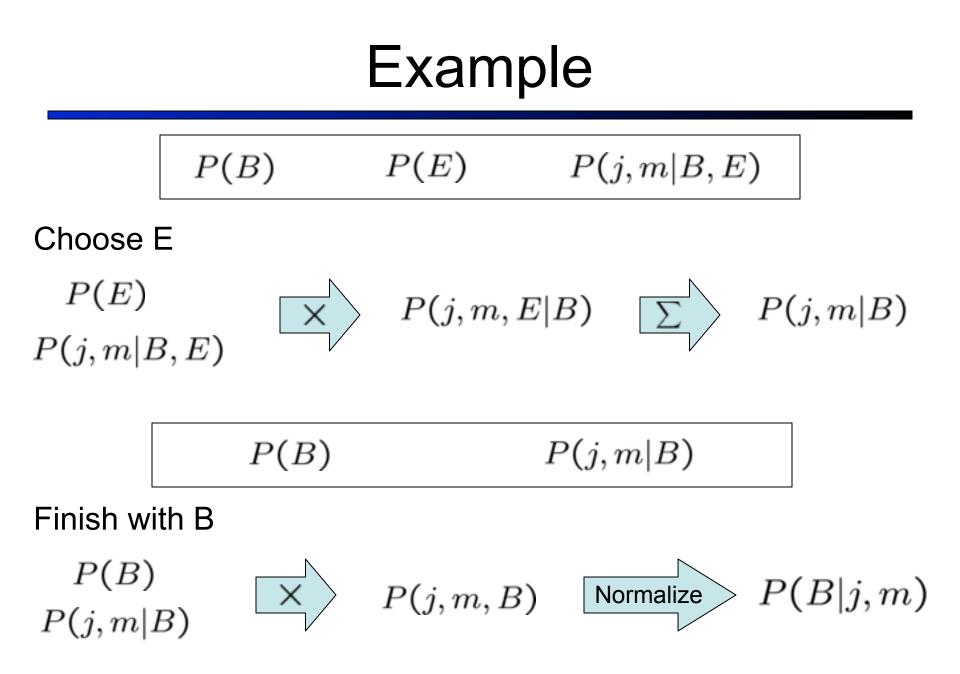
$$P(j|A)$$

$$P(m|A)$$

$$P(m|A)$$

$$P(M|B,E)$$

$$P(B)$$
  $P(E)$   $P(j,m|B,E)$ 



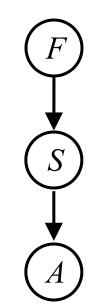
### Exact Inference: Variable Elimination

#### Remaining Issues:

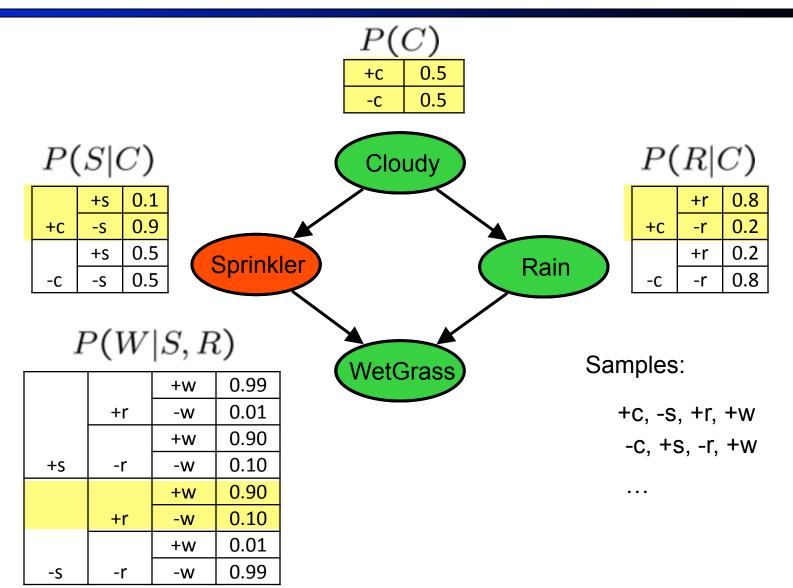
- Complexity: exponential in tree width (size of the largest factor created)
- Best elimination ordering? NP-hard problem
- What you need to know:
  - Should be able to run it on small examples, understand the factor creation / reduction flow
  - Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We have seen a special case of VE already
  - HMM Forward Inference

# **Approximate Inference**

- Simulation has a name: sampling
- Sampling is a hot topic in machine learning, and it's really simple
- Basic idea:
  - Draw N samples from a sampling distribution S
  - Compute an approximate posterior probability
  - Show this converges to the true probability P
- Why sample?
  - Learning: get samples from a distribution you don't know
  - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)



# **Prior Sampling**



# **Prior Sampling**

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

• Let the number of samples of an event be  $N_{PS}(x_1 \dots x_n)$ 

• Then 
$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$$
  
=  $S_{PS}(x_1, \dots, x_n)$   
=  $P(x_1 \dots x_n)$ 

I.e., the sampling procedure is consistent

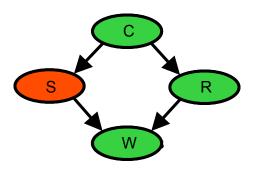
## Example

#### • We'll get a bunch of samples from the BN:

- +c, -s, +r, +w
- +c, +s, +r, +w
- -c, +s, +r, -w
- +c, -s, +r, +w
- -C, -S, -r, +W

#### If we want to know P(W)

- We have counts <+w:4, -w:1>
- Normalize to get P(W) = <+w:0.8, -w:0.2>
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
- Fast: can use fewer samples if less time (what's the drawback?)



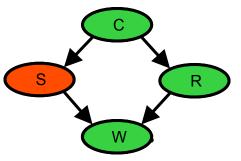
# **Rejection Sampling**

### Let's say we want P(C)

- No point keeping all samples around
- Just tally counts of C as we go

### Let's say we want P(C| +s)

- Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)



+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W

#### Problem with rejection sampling:

- If evidence is unlikely, you reject a lot of samples
- You don't exploit your evidence as you sample

-b +a

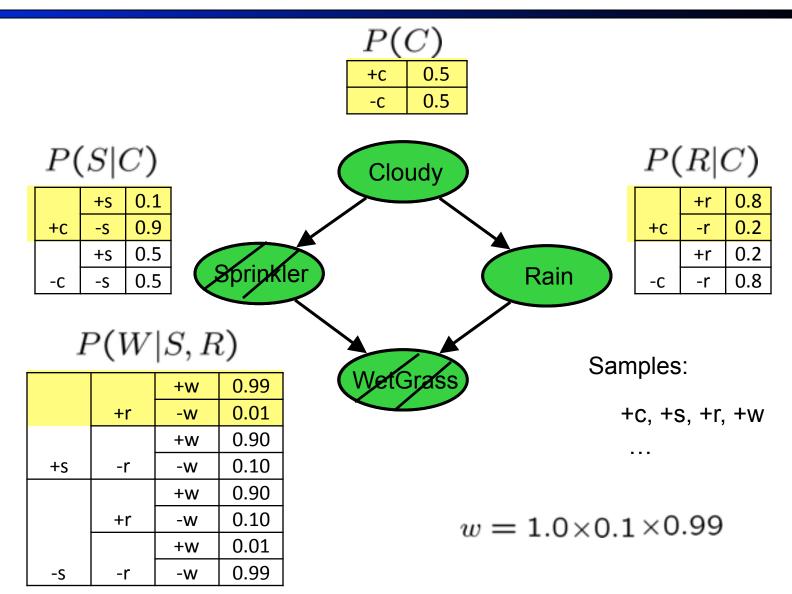
-b. -a

+b, +a

+b, +a



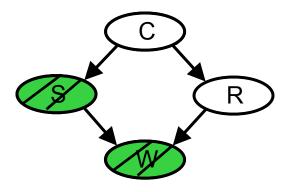
- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents



Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

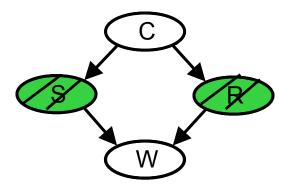
• Now, samples have weights  $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \text{Parents}(E_i))$ 



• Together, weighted sampling distribution is consistent  $S_{WS}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$  = P(z, e)

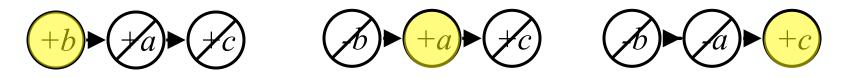
#### Likelihood weighting is good

- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems
  - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable



# Markov Chain Monte Carlo\*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- *Gibbs Sampling*: resample one variable at a time, conditioned on the rest, but keep evidence fixed.



- Properties: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.