CSEP 573: Artificial Intelligence

Reinforcement Learning

Ali Farhadi

Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore
Reinforcement Learning
 - Passive Learning
 - TD Updates
 - Q-value iteration
 - Q-learning
 - Linear function approximation
What is it doing?

Step Delay: 0.10000
Discount: 0.800
Epsilon: 0.500
Learning Rate: 0.800

Step: 75
Position: 63
Velocity: -6.04
100-step Avg Velocity: 0.68
Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$
 - New twist: don’t know T or R
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area
Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to $V(s)$ using a neural network
- Combined with depth 3 search, one of the top 3 players in the world

- You could imagine training Pacman this way…
- … but it’s tricky! (It’s also P3)
Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of *rewards*
 - Agent’s utility is defined by the reward function
 - Must learn to act so as to **maximize expected rewards**
What is the dot doing?
Key Ideas for Learning

- Online vs. Batch
 - Learn while exploring the world, or learn from fixed batch of data

- Active vs. Passive
 - Does the learner actively choose actions to gather experience? or, is a fixed policy provided?

- Model based vs. Model free
 - Do we estimate $T(s,a,s')$ and $R(s,a,s')$, or just learn values/policy directly
Detour: Sampling Expectations

- Want to compute an expectation weighted by $P(x)$:
 \[E[f(x)] = \sum_x P(x) f(x) \]

- **Model-based:** estimate $P(x)$ from samples, compute expectation
 \[
 x_i \sim P(x) \\
 \hat{P}(x) = \text{count}(x)/k \\
 E[f(x)] \approx \sum_x \hat{P}(x) f(x)
 \]

- **Model-free:** estimate expectation directly from samples
 \[
 x_i \sim P(x) \\
 E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)
 \]

- Why does this work? Because samples appear with the right frequencies!
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of $T(s,a,s')$
 - Discover $R(s,a,s')$ the first time we experience (s,a,s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)
Example: Model-Based Learning

Episodes:

- (1,1) up -1
- (1,2) up -1
- (1,2) up -1
- (1,3) right -1
- (2,3) right -1
- (3,3) right -1
- (3,3) right -1
- (3,2) up -1
- (3,2) up -1
- (4,2) exit -100
- (3,3) right -1
- (3,3) right -1
- (4,3) exit +100

\[T(<3,3>, \text{right}, <4,3>) = \frac{1}{3} \]
\[T(<2,3>, \text{right}, <3,3>) = \frac{2}{2} \]
Model-free Learning

Big idea: why bother learning T?

Question: how can we compute V if we don’t know T?

- Use direct estimation to sample complete trials, average rewards at end
- Use sampling to approximate the Bellman updates, compute new values during each learning step

$$V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')]$$
Simple Case: Direct Estimation

- Average the total reward for every trial that visits a state:

 \[
 \begin{align*}
 V(1,1) & \sim \frac{92 - 106}{2} = -7 \\
 V(3,3) & \sim \frac{99 + 97 - 102}{3} = 31.3
 \end{align*}
 \]
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It is easy to understand
 - It doesn’t require any knowledge of T and R
 - It eventually computes the correct average value using just sample transitions

- What’s bad about direct evaluation?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes long time to learn
Towards Better Model-free Learning

Review: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
V_0^\pi(s) = 0
\]

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')]
\]
Sample Avg to Replace Expectation?

Who needs T and R? Approximate the expectation with samples (drawn from T!)

$$V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')]$$

- s
- s'
- $\pi(s)$
- s_1'
- s_2'
- s_3'
- s_k'

$$\text{sample}_1 = R(s, \pi(s), s_1') + \gamma V_i^\pi(s_1')$$

$$\text{sample}_2 = R(s, \pi(s), s_2') + \gamma V_i^\pi(s_2')$$

$$\ldots$$

$$\text{sample}_k = R(s, \pi(s), s_k') + \gamma V_i^\pi(s_k')$$

$$V_{i+1}^\pi(s) \leftarrow \frac{1}{k} \sum_i \text{sample}_i$$
Temporal Difference Learning

\[
V^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')]
\]

- **Big idea:** why bother learning \(T \)?
 - Update \(V \) each time we experience a transition

- **Temporal difference learning (TD)**
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

\[
sample = R(s, \pi(s), s') + \gamma V^\pi(s')
\]

\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample
\]

\[
V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))
\]
Detour: Exp. Moving Average

- Exponential moving average
 - Makes recent samples more important

\[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

\[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]

- Decreasing learning rate can give converging averages
TD Policy Evaluation

\[V_\pi(s) \leftarrow (1 - \alpha) V_\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V_\pi(s') \right] \]

Updates for \(V(<3,3>) \):

\[
V(<3,3>) = 0.5 \times 0 + 0.5 \times [-1 + 1 \times 0] = -0.5
\]
\[
V(<3,3>) = 0.5 \times -0.5 + 0.5 \times [-1 + 1 \times 100] = 49.475
\]
\[
V(<3,3>) = 0.5 \times 49.475 + 0.5 \times [-1 + 1 \times -0.75]
\]

Take \(\gamma = 1, \alpha = 0.5, V_0(<4,3>) = 100, V_0(<4,2>) = -100, V_0 = 0 \text{ otherwise} \)
Problems with TD Value Learning

- TD value leaning is model-free for policy evaluation (passive learning)
- However, if we want to turn our value estimates into a policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly
- Makes action selection model-free too!
Q-Learning Update

- Q-Learning: sample-based Q-value iteration
 \[
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]
 \]

- Learn \(Q^*(s,a) \) values
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate: \(Q(s, a) \)
 - Consider your new sample estimate:
 \[
 sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]
 \]
Q-Learning: Fixed Policy

Current Q-Values

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Exploration / Exploitation

- Several schemes for action selection
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability $1-\varepsilon$, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Q-Learning: ε Greedy
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)
 - Exploration policy $\pi(s') = \max_{a'} Q_i(s', a')$ vs. $\max_{a'} f(Q_i(s', a'), N(s', a'))$
Q-Learning Final Solution

Q-learning produces tables of q-values:

![Q-Values After 1000 Episodes](image)
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - … but not decrease it too quickly!
 - Not too sensitive to how you select actions (!)

- Neat property: off-policy learning
 - learn optimal policy without following it
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about related states and their q values:

- Or even this third one!
Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state

- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?

- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Which Algorithm?

Q-learning, no features, 50 learning trials:

![Pacman game](image-url)

SCORE: 0
Which Algorithm?

Q-learning, no features, 1000 learning trials:

SCORE: 0
Which Algorithm?

Q-learning, simple features, 50 learning trials:
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Advantage:** our experience is summed up in a few powerful numbers

- **Disadvantage:** states may share features but actually be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear q-functions:**

 \[
 \text{transition} = (s, a, r, s') \\
 \text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\
 Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \\
 w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a)
 \]

 - **Exact Q’s**
 - **Approximate Q’s**

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- **Formal justification:** online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s', \cdot) = 0 \quad Q(s, a) = +1 \]
\[R(s, a, s') = -500 \]

\[\text{correction} = -501 \]
\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Linear Regression

Prediction

\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction

\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]
Ordinary Least Squares (OLS)

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Minimizing Error

Imagine we had only one point x with features $f(x)$:

$$\text{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_k f_k(x) \right)^2$$

$$\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_{k} w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_{k} w_k f_k(x) \right) f_m(x)$$

Approximate q update:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] f_m(s, a)$$
Overfitting

Degree 15 polynomial
Policy Search*

- Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

- This is the idea behind policy search, such as what controlled the upside-down helicopter
Policy Search*

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
Policy Search*

- **Advanced policy search:**
 - Write a stochastic (soft) policy:
 \[
 \pi_w(s) \propto e^{\sum_i w_i f_i(s, a)}
 \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w\) (details in the book, optional material)
 - Take uphill steps, recalculate derivatives, etc.
Policy Search*
MDP and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi^*$</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi^*$</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi^*$</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>