Uninformed Search (contd)

Chapter 3

(Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty)

Atomic Agent

Input:

- Set of states
- Operators [and costs]
- Start state
- Goal state [test]

Output:

- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]

Example: The 8-puzzle

7	2	4
5		6
8	3	1

Start State

Goal State

- <u>states?</u>
- <u>actions?</u>
- goal test?
- path cost?

Search Tree Example: Fragment of 8-Puzzle Problem Space

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
 - systematicity: does it visit each state at most once?
- Time and space complexity are measured in terms of
 - *b*: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition
- Breadth-first search
- Depth-first search
- Depth-limited search
- Iterative deepening search

Depth First Search

- Maintain stack of nodes to visit
- Evaluation
 - Complete? No
 - Time Complexity?
 - Space Complexity?

http://www.youtube.com/watch?v=dtoFAvtVE4U

Breadth First Search: shortest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)
 - Time Complexity? $O(b^d)$ - Space Complexity? $O(b^d)$ - Optimal? Yes, if stepcost=1 d e f gh

Uniform Cost Search: cheapest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)
 - Time Complexity? $O(b^{(C^{*}/e)})$ a - Space Complexity? $O(b^{(C^{*}/e)})^{1}$ 5 - Optimal? Yes 2 6 1 3 4d e f g h

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

Suppose:
2 GHz CPU
1 GB main memory
100 instructions / expansion
5 bytes / node

200,000 expansions / sec Memory filled in 100 sec ... < 2 minutes

Idea 1: Beam Search

- Maintain a constant sized frontier
- Whenever the frontier becomes large
 - Prune the worst nodes

Optimal: no

Complete: no

Idea 2: Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(*problem*) returns a solution, or failure

inputs: problem, a problem

```
for depth \leftarrow 0 to \infty do

result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)

if result \neq cutoff then return result
```

Iterative deepening search *I* = 0

Limit = 0Þ.

Iterative deepening search / =1

Iterative deepening search *I* = 2

Iterative deepening search *I* = 3

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth *d* with branching factor *b*:

$$N_{DLS} = b^0 + b^1 + b^2 + \dots + b^{d-2} + b^{d-1} + b^d$$

- Number of nodes generated in an iterative deepening search to depth *d* with branching factor *b*:
 - $N_{IDS} = (d+1)b^0 + d b^{1} + (d-1)b^{2} + ... + 3b^{d-2} + 2b^{d-1} + 1b^d$
- Asymptotic ratio: (b+1)/(b-1)
- For *b* = 10, *d* = 5,

٠

- N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
- Overhead = (123,456 111,111)/111,111 = 11%

Iterative deepening search

• <u>Complete?</u>

– Yes

• <u>Time?</u>

 $- (d+1)b^{0} + d b^{1} + (d-1)b^{2} + \dots + b^{d} = O(b^{d+1})$

- <u>Space?</u>
 - O(bd)
- Optimal?
 - Yes, if step cost = 1
 - Can be modified to explore uniform cost tree (iterative lengthening)
- Systematic?

Cost of Iterative Deepening

b	ratio ID to DFS		
2	3		
3	2		
5	1.5		
10	1.2		
25	1.08		
100	1.02		

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	lterative Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon \rceil})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^{d+1})$	$O(b^{\lceil C^*/\epsilon \rceil})$	O(bm)	O(bl)	O(bd)
Optimal?	Yes	Yes	No	No	Yes

BFS: A,B,G DFS: A,B,C,D,G IDDFS: (A), (A, B, G)

> Note that IDDFS can do fewer expansions than DFS on a graph shaped search space.

BFS: A,B,G DFS: A,B,A,B,A,B,A,B,A,B IDDFS: (A), (A, B, G)

Note that IDDFS can do fewer expansions than DFS on a graph shaped search space.

Search on undirected graphs or directed graphs with cycles... Cycles galore...

Graph (instead of tree) Search: Handling repeated nodes

- Repeated expansions is a bigger issue for DFS than for BFS or IDDFS
 - Trying to remember all previously expanded nodes and comparing the new nodes with them is infeasible
 - Space becomes exponential
 - duplicate checking can also be exponential
- Partial reduction in repeated expansion can be done by
 - Checking to see if any children of a node n have the same state as the parent of n
 - Checking to see if any children of a node n have the same state as any ancestor of n (at most d ancestors for n—where d is the depth of n)

Forwards vs. Backwards

vs. Bidirectional

When is bidirectional search applicable?

- Generating predecessors is easy
- Only 1 (or few) goal states

Bidirectional search

- <u>Complete?</u> Yes
- <u>Time?</u>
 O(b^{d/2})
- <u>Space?</u>
 O(b^{d/2})
- Optimal?

Yes if uniform cost search used in both directions

"The problem is, I don't feel that I have any real direction in life."

Problem

- All these methods are slow (blind)
- Solution → add guidance ("heuristic estimate")
 → "informed search"