

Uninformed Search (contd)

Chapter 3
(Based on slides by Stuart Russell, Subbarao Kambhampati,

Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI
faculty)

Atomic Agent

– Set of states

– Operators [and costs]

– Start state

– Goal state [test]

2

• Path: start  a state satisfying goal test

• [May require shortest path]

Input:

Output:

Example: The 8-puzzle

• states?

• actions?

• goal test?

• path cost?

3

Search Tree Example:
Fragment of 8-Puzzle Problem Space

4

Search strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

– systematicity: does it visit each state at most once?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

5

Uninformed search strategies

• Uninformed search strategies use only the information

available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search

6

Depth First Search
• Maintain stack of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

7

a

b

c d

e

f g h

No

O(b^m)

O(bm)

http://www.youtube.com/watch?v=dtoFAvtVE4U

http://www.youtube.com/watch?v=dtoFAvtVE4U

Breadth First Search: shortest first

• Maintain queue of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

– Optimal?

8

a

b c

d e f g h

Yes (b is finite)

O(b^d)

O(b^d)

Yes, if stepcost=1

Uniform Cost Search: cheapest first

• Maintain queue of nodes to visit

• Evaluation

– Complete?

– Time Complexity?

– Space Complexity?

– Optimal?

9

a

b c

d e f g h

Yes (b is finite)

O(b^(C*/e))

O(b^(C*/e))

http://www.youtube.com/watch?v=z6lUnb9ktkE

1 5

2 6 1
3 4 Yes

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

• Suppose:

10

2 GHz CPU

1 GB main memory

100 instructions / expansion

5 bytes / node

200,000 expansions / sec

Memory filled in 100 sec … < 2 minutes

Idea 1: Beam Search

• Maintain a constant sized frontier

• Whenever the frontier becomes large

– Prune the worst nodes

Optimal: no

Complete: no

Idea 2: Iterative deepening search

12

Iterative deepening search l =0

13

Iterative deepening search l =1

14

Iterative deepening search l =2

15

Iterative deepening search l =3

16

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with branching
factor b:

• NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

• NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• Asymptotic ratio: (b+1)/(b-1)

• For b = 10, d = 5,
•

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
–
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

• Overhead = (123,456 - 111,111)/111,111 = 11%

17

Iterative deepening search

• Complete?
– Yes

• Time?

– (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd+1)

• Space?
– O(bd)

• Optimal?
– Yes, if step cost = 1
– Can be modified to explore uniform cost tree (iterative lengthening)

• Systematic?

18

Cost of Iterative Deepening

19

b ratio ID to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

Summary of algorithms

20

A

B

C

D

G

DFS:

BFS:

 IDDFS:

A,B,G

A,B,C,D,G

(A), (A, B, G)

Note that IDDFS can do fewer

expansions than DFS on a graph

shaped search space.

A

B

C

D

G

DFS:

BFS:

 IDDFS:

A,B,G

A,B,A,B,A,B,A,B,A,B

(A), (A, B, G)

Note that IDDFS can do fewer

expansions than DFS on a graph

shaped search space.

Search on undirected graphs or directed graphs with cycles…

 Cycles galore…

Graph (instead of tree) Search:

Handling repeated nodes

• Repeated expansions is a bigger issue for DFS than for BFS or IDDFS

• Trying to remember all previously expanded nodes and comparing the

new nodes with them is infeasible

• Space becomes exponential

• duplicate checking can also be exponential

• Partial reduction in repeated expansion can be done by

• Checking to see if any children of a node n have the same state as the

parent of n

• Checking to see if any children of a node n have the same state as any

ancestor of n (at most d ancestors for n—where d is the depth of n)

Forwards vs. Backwards

24

vs. Bidirectional

25

When is bidirectional search applicable?

• Generating predecessors is easy

• Only 1 (or few) goal states

Bidirectional search

• Complete? Yes

• Time?
– O(bd/2)

• Space?
– O(bd/2)

• Optimal?
– Yes if uniform cost search used in both directions

26

Breadth-First goes level by level

Visualizing Breadth-First & Uniform Cost Search

Breadth-First goes level by level

This is also a proof of

 optimality…

Problem

• All these methods are slow (blind)

• Solution  add guidance (“heuristic estimate”)

  “informed search”

30

