Uninformed Search (contd)

Chapter 3

(Based on slides by Stuart Russell, Subbarao Kambhampati, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty)
Atomic Agent

Input:
- Set of states
- Operators [and costs]
- Start state
- Goal state [test]

Output:
- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]
Example: The 8-puzzle

• states?
• actions?
• goal test?
• path cost?
Search Tree Example:
Fragment of 8-Puzzle Problem Space
Search strategies

• A search strategy is defined by picking the order of node expansion
• Strategies are evaluated along the following dimensions:
 – completeness: does it always find a solution if one exists?
 – time complexity: number of nodes generated
 – space complexity: maximum number of nodes in memory
 – optimality: does it always find a least-cost solution?
 – systematicity: does it visit each state at most once?

• Time and space complexity are measured in terms of
 – \(b \): maximum branching factor of the search tree
 – \(d \): depth of the least-cost solution
 – \(m \): maximum depth of the state space (may be \(\infty \))
Uninformed search strategies

• **Uninformed** search strategies use only the information available in the problem definition

• Breadth-first search

• Depth-first search

• Depth-limited search

• Iterative deepening search
Depth First Search

- Maintain stack of nodes to visit
- Evaluation
 - Complete? \(\text{No} \)
 - Time Complexity? \(\mathcal{O}(b^m) \)
 - Space Complexity? \(\mathcal{O}(bm) \)

http://www.youtube.com/watch?v=dtoFAvtVE4U
Breadth First Search: shortest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? \textcolor{green}{Yes (b is finite)}
 - Time Complexity? \textcolor{green}{O(b^d)}
 - Space Complexity? \textcolor{green}{O(b^d)}
 - Optimal? \textcolor{green}{Yes, if stepcost=1}

\begin{itemize}
\item a
\item b
\item c
\item d
\item e
\item f
\item g
\item h
\end{itemize}
Uniform Cost Search: cheapest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)
 - Time Complexity? $O(b^{(C*/e)})$
 - Space Complexity? $O(b^{(C*/e)})$
 - Optimal? Yes

http://www.youtube.com/watch?v=z6lUnb9ktkE
Memory Limitation

• Suppose:

 2 GHz CPU
 1 GB main memory
 100 instructions / expansion
 5 bytes / node

 200,000 expansions / sec
 Memory filled in 100 sec ... < 2 minutes
Idea 1: Beam Search

• Maintain a constant sized frontier
• Whenever the frontier becomes large
 – Prune the worst nodes

Optimal: no
Complete: no
Idea 2: Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        result ← DEPTH-LIMITED-SEARCH(problem, depth)
        if result ≠ cutoff then return result
```
Iterative deepening search $l = 0$
Iterative deepening search $l = 1$
Iterative deepening search \(l = 2 \)
Iterative deepening search / $l = 3$
Iterative deepening search

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 $$N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d$$

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 $$N_{IDS} = (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + b^d$$

- Asymptotic ratio: $(b+1)/(b-1)$

- For $b = 10$, $d = 5$,
 - $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$
 - Overhead = $(123,456 - 111,111)/111,111 = 11\%$
Iterative deepening search

• **Complete?**
 – Yes

• **Time?**
 – \((d+1)b^0 + d b^1 + (d-1)b^2 + ... + b^d = O(b^{d+1})\)

• **Space?**
 – \(O(bd)\)

• **Optimal?**
 – Yes, if step cost = 1
 – Can be modified to explore uniform cost tree (iterative lengthening)

• **Systematic?**
Cost of Iterative Deepening

<table>
<thead>
<tr>
<th>b</th>
<th>ratio ID to DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>1.08</td>
</tr>
<tr>
<td>100</td>
<td>1.02</td>
</tr>
</tbody>
</table>
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C*/\epsilon})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C*/\epsilon})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
BFS: A, B, G
DFS: A, B, C, D, G
IDDFS: (A), (A, B, G)

Note that IDDFS can do fewer expansions than DFS on a graph shaped search space.
BFS: \ A,B,G
DFS: \ A,B,A,B,A,B,A,B,A,B,A,B
IDDFS: \ (A), (A, B, G)

Note that IDDFS can do fewer expansions than DFS on a graph shaped search space.

Search on undirected graphs or directed graphs with cycles...

Cycles galore…
Graph (instead of tree) Search: Handling repeated nodes

- Repeated expansions is a bigger issue for DFS than for BFS or IDDFS
 - Trying to remember all previously expanded nodes and comparing the new nodes with them is infeasible
 - Space becomes exponential
 - Duplicate checking can also be exponential

- Partial reduction in repeated expansion can be done by
 - Checking to see if any children of a node n have the same state as the parent of n
 - Checking to see if any children of a node n have the same state as any ancestor of n (at most d ancestors for n—where d is the depth of n)
Forwards vs. Backwards
When is bidirectional search applicable?

- Generating predecessors is easy
- Only 1 (or few) goal states
Bidirectional search

• **Complete?** Yes

• **Time?**
 – $O(b^{d/2})$

• **Space?**
 – $O(b^{d/2})$

• **Optimal?**
 – Yes if uniform cost search used in both directions
Example: Romania

Breadth-First goes level by level
Visualizing Breadth-First & Uniform Cost Search

Breadth-First goes level by level

This is also a proof of optimality...
"The problem is, I don't feel that I have any real direction in life."
Problem

• All these methods are slow (blind)

• Solution → add guidance ("heuristic estimate") → “informed search”