Artificial Intelligence Recap CSE P573

Mausam

What is intelligence?

- (bounded) Rationality
- We have a performance measure to optimize
- Given our state of knowledge
- Choose optimal action
- Given limited computational resources
- Human-like intelligence/behavior

Search in Discrete State Spaces

- This is different from Web Search -
- Every discrete problem can be cast as a search problem.
- (states, actions, transitions, cost, goal-test)
- Types
- uninformed systematic: often slow
- DFS, BFS, uniform-cost, iterative deepening
- Heuristic-guided: better
- Greedy best first, A*
- relaxation leads to heuristics
- Local: fast, fewer guarantees; often local optimal
- Hill climbing and variations
- Simulated Annealing: global optimal

- Genetic algorithms: somewhat non-local due to crossing over
- (Local) Beam Search

Search Example: Game Playing

- Game Playing
- AND/OR search space (max, min)
- minimax objective function
- minimax algorithm (~dfs)
- alpha-beta pruning

- Utility function for partial search
- Learning utility functions by playing with itself
- Openings/Endgame databases
- Secondary search/Quiescence search

Knowledge Representation and Reasoning

- Representing: what I know
- Reasoning: what I can infer
- CSP
- Logic
- Bayes Nets
- Markov Decision Process
- Decision Trees
- Neural Network

KR\&R Example: Propositional Logic

- Representation: Propositional Logic Formula
- CNF, Horn Clause,...
- Reasoning: Deduction
- Forward Chaining
- Resolution
- Model Finding
- Enumeration
- SAT Solving

Search+KR\&R Example: CSP

- Representation
- Variables, Domains, Constraints
- Reasoning: Constraint Propagation

- Node consistency, Arc Consistency, k-Consistency
- Search
- Backtracking search: partial var assignments
- Heuristics for choosing which var/value next
- Local search: complete var assignments
- Tree structured CSPs: polynomial time
- Cutsets: vars assigned \rightarrow converts to Tree CSP

Search+KR\&R Example: SAT Solving

- Representation: CNF Formula
- Reasoning
- pure literals; unit clauses; unit propagation
- Search
- DPLL (~ backtracking search)
- MOM's heuristic
- Local: GSAT, WalkSAT
- Advances
- Clause Learning: learning from mistakes
- Restarts in systematic search
- Portfolio of SAT solvers; Parameter tuning
- Phase Transitions in SAT problems

Search+KR\&R Example: Planning

- Representation: STRIPS
- Reasoning: Planning Graph
- Polynomial data structure
- reasons about constraints on plans (mutual exclusion)
- Search
- Forward: state space search
- planning graph based heuristic
- Backward: subgoal space search
- Local: FF (enforced hill climbing)
- Planning as SAT: SATPlan

KR\&R Part 2: Continuous Spaces

$$
f(x, y)=e^{-\left(x^{2}+y^{2}\right)}+2 e^{-\left((x-1.7)^{2}+(y-1.7)^{2}\right)}
$$

- Search
- Gradient Descent
- Newton Raphson
- Optimization (convex/non-convex...)
- Constraint Optimization (we didn't study this)
- Linear Programming
- Integer Linear Programming
- Mixed Integer Linear Programming

KR\&R: Probability

- Representation: Bayesian Networks
- encode probability distributions compactly
- by exploiting conditional independences
- Reasoning
- Exact inference: var elimination

- Approx inference: sampling based methods
- rejection sampling, likelihood weighting, Gibbs sampling

KR\&R: Hidden Markov Models

- Representation
- Spl form of BN
- Sequence model

- One hidden state, one observation
- Reasoning/Search
- most likely state sequence: Viterbi algorithm
- marginal prob of one state: forward-backward

KR\&R: One-step Decision Theory

- Representation
- actions, probabilistic outcomes, rewards
- Reasoning
- expected value/regret of action

	States of Nature	
Actions	Favorable Market	Unfavorable Market
Large plant	$\mathbf{\$ 2 0 0 , 0 0 0}$	$\mathbf{- \$ 1 8 0 , 0 0 0}$
Small plant	$\mathbf{\$ 1 0 0 , 0 0 0}$	$\mathbf{- \$ 2 0 , 0 0 0}$
No plant	$\mathbf{\$ 0}$	$\mathbf{\$ 0}$

- Expected value of perfect information
- Non-deterministic uncertainty
- Maximax, maximin, eq likelihood, minimax regret..
- Utility theory: value of money...

KR\&R: Markov Decision Process

- Representation
- states, actions, probabilistic outcomes, rewards
- ~AND/OR Graph (sum, max)
- Reasoning: $\mathrm{V}^{*}(\mathrm{~s})$
- Value Iteration: search thru value space
- Policy Iteration: search thru policy space
- State space search

- LAO* (AND/OR version of A*)

Learning: BNs/HMMs/NB

- ML estimation. max $P(D \mid \theta)$
- counting; smoothing
- MAP estimation max $\operatorname{P}(\theta \mid \mathrm{D})$..
- Hidden data
- Expectation Maximization (EM) \{local search\}
- Structure learning (BN)
- Local search thru structure space
- Trade off structure complexity and data likelihood
- HMM: Hidden State Space
- Baum Welch (like EM)

Learning: Decision Tree

- Representation
- tree with one variable at each node
- Reasoning
- just follow the appropriate path
- Learning
- Greedy search: split one var at a time
- post pruning/early stopping

Learning: Perceptron

- Representation: perceptron

- Learning
- local search in weight space to minimize errors
- contrast with SVM
- maximize margin from support vectors
- Perceptron: linear separator
- Neural network: layers of perceptrons

Learning: Nearest neighbor

- Representation: none!
- Reasoning: weighted average of k-nearest pts
- Learning: none!

- can represent any decision boundary
- requires huge data (needs all space to be filled)
- makes error close to boundary

Agents

Popular Themes

- Weak AI vs. Strong AI
- Syntax vs. Semantics
- Logic vs. Probability

Weak AI vs. Strong AI

- Weak - general methods
- primarily for problem solving
- A*, CSP, Bayes Nets, MDPs...
- Strong -- knowledge intensive
- more knowledge \Rightarrow less computation
- achieve better performance in specific tasks
- POS tagging, Chess, Jeopardy

Syntax vs. Semantics

- Syntax: what can I say
- Sentence in English
- Logic formula in Prop logic
- CPT in BN
- Semantics: what does it mean
- meaning that we understand
$-A^{\wedge} B$: both A and B are true
- Conditional independence ...

Logic vs. Probability

- Discrete || Continuous
- Hill climbing || Gradient ascent
- SAT solving || BN inference
- Tree structured CSP || Polytree Bayes nets
- Cutset || Cutset
- Classical Planning|| Factored MDP
- Bellman Ford || Value Iteration
- A* || LAO*

Advanced Ideas in Al

- Factoring state/actions...
- Hierarchical decomposition
- Hierarchy of actions
- Approximation by sampling
- Markov Chain Monte Carlo
- UCT algorithm: game playing
- Particle filters: belief tracking in robotics
- Context sensitive independence
- Cutsets
- Backbones in logic
- Combining probability and logic
- Markov Logic Networks, Probabilistic Relational Models

Al we didn't cover

- Ontologies
- Information retrieval/web search
- Robotics
- Vision
- Mechanism design
- Computational Neuroscience
- Reinforcement learning

Applications of AI

- Sumit: automatic accompaniment of music - probabilistic reasoning, machine learning (HMMs)
- Ashish: hardware/software verification, combinatorial design, subprobs in many domains - SAT solving
- Joseph: fraud detection, market/risk assessment, personalization, recommender systems...
- Machine learning
- Matthai: elderly care
- Machine learning, probabilistic reasoning

Applications of AI

- Mars rover: planning
- Jeopardy: NLP, info retrieval, machine learning
- Puzzles: search, CSP, logic
- Chess: search
- Blackjack: MDP
- Text categorization: machine learning
- Self-driving cars: robotics, prob. reasoning, ML...

Ethics of Artificial Intelligence

- Robots
- Robot Rights
- Three Laws of Robotics
- Al replacing people jobs
- Any different from industrial revolution?
- Ethical use of technology
- Dynamite vs. Speech understanding
- Privacy concerns
- Humans/Machines reading freely available data on Web
- Gmail reading our news
- Al for developing countries/improving humanity

Al-Centric World © $^{\text {O }}$

Databases

Operations

Statistics

Linguistics
Robot
Design

